A Karst Probability Map for the Western Mountain Aquifer (Israel & West Bank) using a stochastic modeling approach 

Author:

Banusch Sandra,Somogyvári MárkORCID,Sauter Martin,Renard PhilippeORCID,Engelhardt Irina

Abstract

<p>Investigating the structure of conduit networks in karst aquifers is a common challenge when working in these complex hydrogeological environments. The network geometry plays an important role in karst flow dynamics, but highly karstified areas are often difficult to characterize by field measurements. Here, we present a methodology that generates karst conduit network geometries reasonably quick without solving complex flow or dissolution equations, and that uses only little input information. The stochastic approach also enables the investigation of the uncertainty of generated networks in the form of a karst probability map.</p><p>The “Stochastic Karst Simulator” (SKS) is a stochastic modeling approach developed by Borghi et al. (2012) to generate a 3D karst conduit network by computing a minimum effort path between the given inlet and outlet points. This study uses such a modeling approach to characterize the karst network geometry of the Western Mountain Aquifer (WMA), a highly karstified and exploited carbonate aquifer located in Israel and the West Bank. The SKS simulations are based on a conceptual model of the aquifer’s karst genesis, to identify the position of karst springs and recharge zones over past geological ages.</p><p>Three different phases of karst formation are identified for the WMA. Phase 1: a paleo-discharge zone exists, located close to the present-day coastline of Israel, phase 2: a period of extreme low sea levels during the Messinian salinity crisis, when paleo-canyons were reactivated along this coastline, and phase 3: the modern-day outlets of the aquifer. The iterative approach of the SKS algorithm accounts for these different phases and creates new conduit pathways by building on ones formed in earlier phases. The algorithm also uses the hydrological model of the study site as soft information, providing knowledge about the internal heterogeneities of the karst formations (e.g. statistical properties of fractures). The resulting karst probability map is compared to the location of the most productive pumping wells in the region, assuming a high yield in groundwater abstraction indicating major karst conduits near the pumped well. </p><p>We demonstrate the method by showing a reconstruction of the karst conduit networks at the WMA model area, an otherwise not available spatial information. The simulations show that the changes in karst spring and recharge locations have a great impact on the geometry and connectivity of the conduit network. Overarching trends in the conduit orientation of the resulting probability map are in keeping with the proposed karst genesis model, resulting in the evolution of a hierarchical network. High karstification is indicated around modern-day springs, also in agreement with the location of numerous pumping wells in that region.</p><p>The SKS algorithm is a useful tool to test different hypotheses of karst genesis and to understand the evolution of karst network geometries. The methodology is numerically efficient, and its inputs can be easily adjusted. Soft information on karst development allows for the generation of a sound hydraulic parameter field, which can be implemented in hydrological models to better understand and manage these aquifer systems.</p>

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cave morphometric analysis: A review;Progress in Physical Geography: Earth and Environment;2024-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3