Applying BEL1D for transient electromagnetic sounding inversion

Author:

Ahmed Arsalan,Michel Hadrien,Deleersnyder WouterORCID,Dudal David,Hermans ThomasORCID

Abstract

<p>Accurate subsurface imaging through geophysics is of prime importance for many geological and hydrogeological applications. Recently, airborne electromagnetic methods have become more popular because of their potential to quickly acquire large data sets at relevant depths for hydrogeological applications. However, the solution of inversion of airborne EM data is not unique, so that many electrical conductivity models can explain the data. Two families of methods can be applied for inversion: deterministic and stochastic methods. Deterministic (or regularized) approaches are limited in terms of uncertainty quantification as they propose one unique solution according to the chosen regularization term. In contrast, stochastic methods are able to generate many models fitting the data. The most common approach is to use Markov chain Monte Carlo (McMC) Methods. However, the application of stochastic methods, even though more informative than deterministic ones, is rare due to a quite high computational cost.</p><p>In this research, the newly developed approach named Bayesian Evidential Learning 1D imaging (BEL1D) is used to efficiently and stochastically solve the inverse problem. BEL1D is combined to SimPEG: an open source python package, for solving the electromagnetic forward problem. BEL1D bypasses the inversion step, by generating random samples from the prior distribution with defined ranges for the thickness and electrical conductivity of the different layers, simulating the corresponding data and learning a direct statistical relationship between data and model parameters. From this relationship, BEL1D can generate posterior models fitting the field observed data, without additional forward model computations. The output of BEL1D shows the range of uncertainty for subsurface models. It enables to identify which model parameters are the most sensitive and can be accurately estimated from the electromagnetic data.</p><p>The application of BEL1D together with SimPEG for stochastic transient electromagnetic inversion is a very efficient approach, as it allows to estimate the uncertainty at a limited cost. Indeed, only a limited number of training models (typically a few thousands) is required for an accurate prediction. Moreover, the computed training models can be reused for other predictions, considerably reducing the computation cost when dealing with similar data sets. It is thus a promising approach for the inversion of dense data set (such as those collected in airborne surveys). In the future, we plan on relaxing constraints on the model parameters to go towards interpretation of EM data in coastal environment, where transition can be smooth due to salinity variations.</p><p><em>Keywords </em>: EM, Uncertainty, 1D imaging, BEL1D, SimPEG</p>

Publisher

Copernicus GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3