A calibrated visual web camera network for measuring volcanic plume heights: technical aspects and implementation for operational use

Author:

Barnie Talfan,Hjörvar Tryggvi,Sigurðsson Eysteinn Már,Pfeffer Melissa Anne,Arason Þórður,Barsotti Sara

Abstract

<p>The Icelandic Meteorological Office (IMO) maintains a network of web cameras for monitoring the environment and identifying possible hazards, including reduced atmospheric visibility, changing river flow conditions and snow accumulation. Recently, the network has been expanded to improve the volcano monitoring capacity, with the specific aim of observing eruption onset and estimating volcanic plume heights. Here, we present how sites for cameras are chosen, the environmental constraints that inform the two camera designs currently in use, how the data is transmitted to the institute, stored, and pushed through the data processing system, and the different techniques used to calibrate the cameras and calculate the orientations of plumes such that measurements can be made from the images they produce. Camera calibration is a particular challenge for such a diverse range of cameras and environments, with some cameras already installed and inaccessible, and here we show how we use laboratory calibration, feature matching, horizon matching and star matching to find the internal camera geometry and camera orientation in different scenarios. Once calibrated, geometric measurements can be extracted from the images by either providing constraints from Numerical Weather Prediction (NWP) models on the likely orientation of the plume, or by using two images with different views, which provide enough information to pin down a point in three dimensions. In the latter case we show how ray projection can be used to locate a point. These plume calculation tools and final images are made available to the forecasters and natural hazard specialists on-duty using an interactive webpage. The plume height time series are easily saved for ingestion into the Volcanic Eruptive Source Parameter Assessment (VESPA) inversion system designed to assess eruption intensity and to provide calculated eruption source parameters in input to the tephra dispersion forecasting model.</p>

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3