H/V spectral ratios at the InSight landing site using ambient noise and Marsquake records

Author:

Carrasco SebastiánORCID,Knapmeyer-Endrun Brigitte,Margerin Ludovic,Schmelzbach CédricORCID,Clinton John,Stähler SimonORCID,Giardini DomenicoORCID,Kedar Sharon,Grott Matthias,Golombek Matthew,Lognonné Philippe,Banfield Don

Abstract

<p>The InSight mission landed on Mars on November 26th, 2018 and its seismometer, the Seismic Experiment for Interior Structure (SEIS), has recorded continuous Martian seismic data since February 2019, consisting of mainly ambient seismic noise but also hundreds of seismic events.</p><p>We used the SEIS data to study the horizontal-to-vertical spectral ratios from both the ambient seismic noise (nHV) and the seismic events (eHV), for frequencies above 0.6 Hz, in order to get further constraints on the first tens of meters at the Insight landing site. The nHV curve was obtained by using data segments of 50 s over more than 400 Sols. The preferred nHV curve is observed during the northern spring and summer at low wind levels and it is a mostly flat curve with a prominent trough around ~2.4 Hz. Outside of these time periods, the nHV curve is contaminated with artificial peaks likely related to lander modes. On the other hand, the eHV curve was created using 336 seismic events with quality either A, B or C, as defined by the Marsquake Service. For each seismic event, we computed the signal-to-noise ratio (SNR) at each frequency and only frequencies with SNR>3 were used to obtain the final eHV curve. In addition to the 2.4 Hz trough, the final eHV curve shows a strong peak around 8 Hz, which is not observed from the ambient noise data possibly due to a lack of seismic energy in this frequency band able to excite it.</p><p>A preliminary inversion of the eHV curve, considering the fundamental mode of the Rayleigh wave only, shows that the 2.4 Hz trough and the 8 Hz peak can be explained by a shear-wave velocity model increasing from the surface to a depth of 5-8 m (likely the boundary between the regolith and coarse ejecta), in good agreement with previous analysis based on compliance observations, hammering measurements and satellite images. At this depth, a discontinuity leading to a higher velocity layer is observed, which is followed by a deeper low-velocity layer about 20 m thick. The modeling assuming body waves only or a full diffuse seismic wavefield is currently under investigation.</p>

Publisher

Copernicus GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. In Situ Regolith Seismic Velocity Measurement at the InSight Landing Site on Mars;Journal of Geophysical Research: Planets;2022-09-30

2. Mars from the InSight: Seismology Beyond Earth;Springer Proceedings in Earth and Environmental Sciences;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3