Classification of stones in coastal marine environments using random forest machine learning on topo-bathymetric LiDAR data

Author:

Hansen Signe Schilling,Ernstsen Verner Brandbyge,Andersen Mikkel Skovgaard,Al-Hamdani Zyad,Baran Ramona,Niederwieser Manfred,Steinbacher Frank,Kroon Aart

Abstract

<p>Stones on the seabed in coastal marine environments form an important hard substrate for macroalgae, and hence for coastal marine reefs. Such reef areas constitute important ecosystem services, e.g. storage of organic carbon in macroalgae or “blue carbon” as well as important habitats to fish for living, hiding and feeding. Information and knowledge about stone locations and geometry in coastal marine environments are often obtained as part of seabed habitat mapping. Usually, seabed habitat mapping is based on geophysical surveys using multibeam echo sounding along with side-scan sonar imaging in combination with biological ground-truthing. However, coastal areas are challenging to map with full spatial coverage due to the shallow water conditions. Furthermore, the research vessels often have too large drafts to sail in very shallow water close to the coastline. An alternative is to use airborne LiDAR technology. Topo-bathymetric LiDAR (green wavelength of 532 nm) has made it possible to derive high-resolution data of the bathymetry in coastal zones (e.g. Andersen et al., 2017). This technology can cover the transition zone between land and water, and the time consumption for data acquisition is small compared to vessel borne methods. However, the processing of the data still requires manual decision steps, which makes it rather time consuming, and to some extent subjective.</p><p>The aim of this study was to investigate the possibility of developing an automated method to classify stones from topo-bathymetric LiDAR data in coastal marine environments with shallow water (<6 m). The Rødsand lagoon in Denmark, where topo-bathymetric LiDAR data were acquired in 2015, was used as test. The classification was done using the random forest machine learning algorithm. The study resulted in the development of a nearly automated method to classify stones from topo-bathymetric LiDAR data. The classification accuracy was between 80 and 90% for the test site. The obtained knowledge about stone locations can provide important information about the ecosystem services and improved management of the coastal marine environment.</p><p> </p><p>Acknowledgement:</p><p>This work is part of the project "ECOMAP - Baltic Sea environmental assessments by opto-acoustic remote sensing, mapping, and monitoring", supported by BONUS (Art 185), funded jointly by the EU and the Innovation Fund Denmark.</p><p> </p><p>References</p><p>Andersen MS, Gergely A, Al-Hamdani Z, Steinbacher F, Larsen LR, Ernstsen VB (2017). Processing and performance of topobathymetric lidar data for geomorphometric and morphological classification in a high-energy tidal environment. Hydrology and Earth System Sciences, 21: 43-63, DOI: 10.5194/hess-21-43-2017.</p>

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3