Digital Transformation of Critical Water Infrastructure

Author:

Konstantinidis FotiosORCID,Michalis PanagiotisORCID,Valyrakis ManousosORCID

Abstract

<p>The ongoing fourth industrial revolution has accelerated the transformation of management and maintenance of assets into the digital era. This involves the application and interoperability of management systems in an upper system like the one described as Civil Infrastructure 4.0 [1]. CI4.0 involves the collection and process of data from the surrounding infrastructure over a wide range of assets and systems, incorporating a multi-integrated decision support system for efficient asset management. This is particular important for ageing water infrastructure as it is threatened by the occurrence of flood-related hazards, which have significant degradation impact and consequences to transport systems, e.g. bridges, embankments, waterways etc.</p><p>Despite the recent advances in the development and application of immersive technologies, transport and water infrastructure are still considered to be managed in a traditional way. This process involves on-site engineers making decisions based on their skills and experience, while in the majority of the times using paper-based analytics.</p><p>This study presents the development of intelligent tools to efficiently advance decision making about the maintenance procedure of water infrastructure, aiming to reduce costs and assessment times. One of the technological pillars, which can upgrade the traditional procedures is Augmented Reality (AR) technology, which is already used in other industries like Manufacturing and Automotive [2]. AR creates a combined environment in which the views of real and virtual worlds co-exist. AR technology provides valuable key information to inspectors, through AR glasses or mobile devices, pointing out areas of interest. Such an AR solution can register the coordination of location of the defects, analysing the possible maintenance solutions, and communicating effectively between in-house operators and inspectors on-site.</p><p>[1] Michalis, P., Konstantinidis, F. and Valyrakis, M. (2019). The road towards Civil Infrastructure 4.0 for proactive asset management of critical infrastructure systems. Proceedings of the 2nd International Conference on Natural Hazards & Infrastructure (ICONHIC), 23–26 June Chania, Greece, pp. 1-9.</p><p>[2] Konstantinidis, F.K., Kansizoglou, I., Santavas, N., Mouroutsos, S.G. and Gasteratos, A., 2020. MARMA: A Mobile Augmented Reality Maintenance Assistant for Fast-Track Repair Procedures in the Context of Industry 4.0. Machines, 8(4), p.88.</p>

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3