Use of Coupled Human-Water Model for Evaluating the Impacts of the WEF Nexus on the Energy Potential of Crop Residues in Pakistan

Author:

Anderson Emma C.ORCID,Alizadeh Mohammad RezaORCID,Adamowski Jan,Malard JulienORCID,Inam Ahzar

Abstract

<p>Failure to consider interactions in the Water-Energy-Food (WEF) nexus can lead to unintended outcomes. In Pakistan, research has suggested that agricultural residues are a viable alternative renewable energy source to address the persistent energy shortfalls and reliance on imported diesel and heavy fuel oil. However, these studies assess the viability from a broad scale and do not adequately account for nexus interactions. For example, a quarter of irrigated land in Pakistan is salt-affected, adversely impacting crop (and residue) yields. Failure to consider climate change impacts on water availability and agricultural productivity also increases uncertainty. Finally, the effects of socioeconomic feedbacks and water management policies are not understood.  To address these challenges, this research applies a coupled physically-based (SAYSMOD), and group (stakeholder) built system dynamics model (P-GBSDM) of the agricultural system in the lower Rechna Doab, Pakistan, to assess the sub-regional viability of residue-based energy production in salt-affected and non-salt-affected lands. The modelled area (750 km2) is within a district found highly suitable for residue-based energy. The P-GBSDM, developed by Inam et al. (2017), captures the socioeconomic and spatially-distributed environmental feedbacks related to agricultural productivity, hydrological parameters and farmer's livelihood indicators. The P-GBSDM is amended for this research to estimate crop residue yield and potential energy production and feedbacks related to farmer income (from selling residues) and crop residue removal. The model is simulated for the years 2000-2030 under different climate change scenarios and stakeholder-suggested salinity management practices. Crop (and residue) yield, equivalent collection radius, farmer income, and soil salinity are used to evaluate the residue-based energy production in this area. Results are compared to literature values. Preliminary results suggest that estimates that do not consider the WEF nexus overestimate residue-based energy generation's potential. </p>

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3