Significant climate benefits from near-term climate forcer mitigation in spite of aerosol reductions

Author:

Allen RobertORCID,Horowitz Larry,Naik Vaishali,Oshima NagaORCID,O'Connor Fiona,Turnock StevenORCID,Shim SungboORCID,Le Sager Philippe,van Noije TwanORCID,Tsigaridis KostasORCID,Bauer SusanneORCID,Sentman LoriORCID,John JasminORCID,Broderick Conor,Deushi MakotoORCID,Folberth GerdORCID,Fujimori Shinichiro,Collins WilliamORCID

Abstract

<p>Near-term climate forcers (NTCFs), including aerosols and chemically reactive gases such as tropospheric ozone and methane, offer a potential way to mitigate climate change and improve air quality--so called "win-win" mitigation policies.   Prior studies support improved air quality under NTCF mitigation, but with conflicting climate impacts that range from a significant reduction in the rate of global warming to only a modest impact.  Here, we use state-of-the-art chemistry-climate model simulations conducted as part of the Aerosol and Chemistry Model Intercomparison Project (AerChemMIP) to quantify the 21st-century impact of NTCF reductions, using a realistic future emission scenario with a consistent air quality policy.  Non-methane NTCF (NMNTCF; aerosols and ozone precursors) mitigation improves air quality, but leads to significant increases in global mean precipitation of 1.3% by mid-century and 1.4% by end-of-the-century, and corresponding surface warming of 0.23 and 0.21 K.  NTCF (all-NTCF; including methane) mitigation further improves air quality, with larger reductions of up to 45% for ozone pollution, while offsetting half of the wetting by mid-century (0.7% increase) and all the wetting by end-of-the-century (non-significant 0.1% increase) and leading to surface cooling of -0.15 K by mid-century and -0.50 K by end-of-the-century.  This suggests that methane mitigation offsets warming induced from reductions in NMNTCFs, while also leading to net improvements in air quality.</p>

Publisher

Copernicus GmbH

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3