Global fine resolution mapping of ozone metrics through explainable machine learning

Author:

Betancourt ClaraORCID,Stadtler ScarletORCID,Stomberg Timo,Edrich Ann-Kathrin,Patnala Ankit,Roscher RibanaORCID,Kowalski Julia,Schultz Martin G.ORCID

Abstract

<p>Through the availability of multi-year ground based ozone observations on a global scale, substantial geospatial meta data, and high performance computing capacities, it is now possible to use machine learning for a global data-driven ozone assessment. In this presentation, we will show a novel, completely data-driven approach to map tropospheric ozone globally.</p><p>Our goal is to interpolate ozone metrics and aggregated statistics from the database of the Tropospheric Ozone Assessment Report (TOAR) onto a global 0.1° x 0.1° resolution grid.  It is challenging to interpolate ozone, a toxic greenhouse gas because its formation depends on many interconnected environmental factors on small scales. We conduct the interpolation with various machine learning methods trained on aggregated hourly ozone data from five years at more than 5500 locations worldwide. We use several geospatial datasets as training inputs to provide proxy input for environmental factors controlling ozone formation, such as precursor emissions and climate. The resulting maps contain different ozone metrics, i.e. statistical aggregations which are widely used to assess air pollution impacts on health, vegetation, and climate.</p><p>The key aspects of this contribution are twofold: First, we apply explainable machine learning methods to the data-driven ozone assessment. Second, we discuss dominant uncertainties relevant to the ozone mapping and quantify their impact whenever possible. Our methods include a thorough a-priori uncertainty estimation of the various data and methods, assessment of scientific consistency, finding critical model parameters, using ensemble methods, and performing error modeling.</p><p>Our work aims to increase the reliability and integrity of the derived ozone maps through the provision of scientific robustness to a data-centric machine learning task. This study hence represents a blueprint for how to formulate an environmental machine learning task scientifically, gather the necessary data, and develop a data-driven workflow that focuses on optimizing transparency and applicability of its product to maximize its scientific knowledge return.</p>

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3