Using Gradient Boosting Regressors to forecast the ambient solar wind from coronal magnetic models

Author:

Bailey RachelORCID,Reiss Martin A.,Möstl ChristianORCID,Arge C. Nick,Henney Carl,Owens MattORCID,Amerstorfer UteORCID,Amerstorfer TanjaORCID,Weiss AndreasORCID,Hinterreiter JürgenORCID

Abstract

<p>In this study we present a method for forecasting the ambient solar wind at L1 from coronal magnetic models. Ambient solar wind flows in interplanetary space determine how solar storms evolve through the heliosphere before reaching Earth, and accurately modelling and forecasting the ambient solar wind flow is therefore imperative to space weather awareness. We describe a novel machine learning approach in which solutions from models of the solar corona based on 12 different ADAPT magnetic maps are used to output the solar wind conditions some days later at the Earth. A feature analysis is carried out to determine which input variables are most important. The results of the forecasting model are compared to observations and existing models for one whole solar cycle in a comprehensive validation analysis. We find that the new model outperforms existing models and 27-day persistence in almost all metrics. The final model discussed here represents an extremely fast, well-validated and open-source approach to the forecasting of ambient solar wind at Earth, and is specifically well-suited for ensemble modelling or for application with other coronal models.</p>

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3