Experimental and Numerical Modelling of Self-Potential Response to Saltwater Intrusion

Author:

Benner EricORCID,Hamill Gerard,Etsias Georgios,Rowan Thomas,Salinas Pablo,Thomson Christopher,Fernández Águila JesúsORCID,McDonnell MarkORCID,Flynn Raymond,Butler AdrianORCID,Jackson Matthew

Abstract

<p>Saltwater intrusion (SWI) in coastal aquifers poses a significant hazard to freshwater security for many of the world’s population centers. SWI is challenging to monitor and model due to the physical complexity of real aquifers. Self-Potential (SP) has been an important method for monitoring the subsurface for many years. Previous studies have suggested that borehole measurements of SP could be used to identify saline interface movement and provide advance warning of imminent saline breakthrough at an abstraction borehole. SP produced during SWI comprises the combined effects of electro-kinetic potential, arising from transport of excess charge in response to water potential (head) gradients, and exclusion-diffusion potential, arising from transport of excess charge in response to ion (salt) concentration gradients. SP can have advantages over other geophysical methods, such as electrical resistivity tomography and borehole fluid electrical conductivity measurements, because the effect of  moving saltwater fronts can be determined using a relatively small number of localized probes.</p><p>We quantitatively investigate the relationship between SP and SWI using experimental and numerical modelling with the aim of reproducing experimentally measured SP response via simulation. Building on well-established methods, a novel laboratory setup has been developed to optically monitor SWI in a thin homogenous aquifer while simultaneously recording SP data at multiple probe points. A Matlab solver is used to calculate SP data from simulated hydrodynamic SWI data computed by the fixed-grid finite element software SUTRA. Similarly, finite element SWI simulations using adaptive meshing are carried out using the IC-FERST software, which directly computes hydrodynamic and SP solutions. We compare these numerical results with experimental data and show similarity in SP signal trends as functions of brine movement near probe locations. We conclude with a discussion of the merits of SP modelling and its suitability for interpreting SP signals for monitoring and characterization of saltwater intrusion in coastal aquifers.</p>

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Prediction of Groundwater Pollution in Island Coastal Areas;Environmental Science and Engineering;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3