Translating weather forecasts to road accident probabilities

Author:

Becker NicoORCID,Rust Henning,Ulbrich UweORCID

Abstract

<p>In Germany about 1000 severe road accidents are recorded by the police per day. On average, 8 % of these accidents are related to weather conditions, for example due to rain, snow or ice. In this study we compare several versions of a logistic regression models to predict hourly probabilities of such accidents in German administrative districts. We use radar, reanalysis and ensemble forecast data from the regional operational model of the German Meteorological Service DWD as well as police reports to train the model with different combinations of input datasets. By including weather information in the models, the percentage of correctly predicted accidents (hit rate) is increased from 30 % to 70 %, while keeping the percentage of wrongly predicted accidents (false-alarm rate) constant at 20 %. Accident probability increases nonlinearly with increasing precipitation. Given an hourly precipitation sum of 1 mm, accident probabilities are approximately 5 times larger at negative temperatures compared to positive temperatures. When using ensemble weather forecasts to predict accident probabilities for a leadtime of up to 21 h ahead, the decline in model performance is negligible. We suggest to provide impact-based warnings for road users, road maintenance, traffic management and rescue forces.</p>

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3