Droughts and Floods Captured by Land Water Storage in Chao Phraya River Basin during 2002-2017

Author:

Abhishek AbhishekORCID,Kinouchi Tsuyoshi

Abstract

<p>Frequent droughts and floods in the Chao Phraya river basin, which contributes about 66% to Thailand’s GDP, have cost the country’s socio-economic development in several ways. We quantified the Land Water Storage (LWS) in the basin using the three data products, i.e., two mascons and one spherical harmonic in terms of anomaly time series of equivalent water depth or volume, from the Gravity Recovery and Climate Experiment (GRACE) satellite data from April 2002 to June 2017. Since all three data products were highly correlated (r>0.9), the arithmetic mean was used to avoid bias in any particular product. LWS showed a linear trend of 9.8 mm/yr equivalent to 1.6 km<sup>3</sup>/yr in the basin. The flood and drought events were also well captured by the LWS dynamics in the basin. The severe floods of 2011, primarily resulting from the heavy rainfall of 1439 mm, which was 143 % of the long-term average in the rainy season, led to a maximum value of 430 mm (68.8 km<sup>3</sup>) in the LWS anomaly during September 2011. The drought in March 2016 was also evident with a minimum LWS anomaly of -334 mm (-53.44 km<sup>3</sup>). All the multi-year flood and drought years were recorded in the LWS time series with a lag of up to two months from rainfall. Since the minimum rain during the dry periods (i.e., November to April) was almost consistent, the extreme events were supposed to be triggered mainly by the variable maximum rainfall occurring during the monsoon season. The methodology can be used for efficient water management and policymaking in the data-scarce river basins globally. Future work includes filling the data gap between GRACE and GRACE Follow-On data, followed by the assessment of anthropogenic impacts (i.e., groundwater abstraction and reservoir management) on water storage dynamics in the basin.</p>

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3