Biomass burning aerosol emissions from vegetation fires: particle number and mass emission factors and size distributions

Author:

Janhäll S.,Andreae M. O.,Pöschl U.

Abstract

Abstract. Aerosol emissions from vegetation fires have a large impact on air quality and climate. In this study, we use published experimental data and different fitting procedures to derive dynamic particle number and mass emission factors (EFPN, EFPM) related to the fuel type, burning conditions and the mass of dry fuel burned, as well as characteristic CO-referenced emission ratios (PN/CO, PM/CO). Moreover, we explore and characterize the variability of the particle size distribution of fresh smoke, which is typically dominated by a lognormal accumulation mode with count median diameter around 120 nm (depending on age, fuel and combustion efficiency), and its effect on the relationship between particle number and mass emission factors. For the particle number emission factor of vegetation fires, we found no dependence on fuel type and obtained the following parameterization as a function of modified combustion efficiency (MCE): EFPN=34×1015×(1−MCE) kg−1±1015 kg−1 with regard to dry fuel mass (d.m.). For the fine particle mass emission factors (EFPM) we obtained (86–85×MCE) g kg−1±3 g kg−1 as an average for all investigated fires; (93–90×MCE) g kg−1±4 g kg−1 for forest; (67–65×MCE) g kg−1±2 g kg−1 for savanna; (63–62×MCE) g kg−1±1 g kg−1 for grass. For the PN/CO emission ratio we obtained an average of (34±16) cm−3 ppb−1 exhibiting no systematic dependence on fuel type or combustion efficiency. The average PM/CO emission ratios were (0.09±0.04) g g−1 for all investigated fires; (0.13±0.05) g g−1 for forest; (0.08±0.03) g g−1 for savanna; and (0.07±0.03) g g−1 for grass. The results are consistent with each other, given that particles from forest fires are on average larger than those from savanna and grass fires. This assumption and the above parameterizations represent the current state of knowledge, but they are based on a rather limited amount of experimental data which should be complemented by further measurements. Nevertheless, the presented parameterizations appear sufficiently robust for exploring the influence of vegetation fires on aerosol particle number and mass concentrations in regional and global model studies.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 212 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3