A decadal regional and global trend analysis of the aerosol optical depth using a data-assimilation grade over-water MODIS and Level 2 MISR aerosol products
-
Published:2010-11-24
Issue:22
Volume:10
Page:10949-10963
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Zhang J.,Reid J. S.
Abstract
Abstract. Using the ten-year (2000–2009) Data-Assimilation (DA) quality Terra MODIS and MISR aerosol products, as well as 7 years of Aqua MODIS, we studied both regional and global aerosol trends over oceans. This included both operational and data assimilation grade versions of the products. After correcting for what appears to be aerosol signal drift from the radiometric calibration of both MODIS instruments, we found MODIS and MISR agreed on a statistically negligible global trend of ±0.003/per decade. Our study also suggests that AODs over the Indian Bay of Bengal, east coast of Asia, and Arabian Sea show increasing trends of 0.07, 0.06, and 0.06 per decade for MODIS, respectively. These regional trends are considered as significant with a confidence level above 95%. Similar increasing trends were found from MISR, but with less relative magnitude. These trends reflect respective increases in the optical intensity of aerosol events in each region: anthropogenic aerosols over the east coast of China and Indian Bay of Bengal; and a stronger influence from dust events over the Arabian Sea. Negative AOD trends, low in confidence levels, are found off Central America, the east coast of North America, and the west coast of Africa, which indicate that longer periods of observation are necessary to be conclusive.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference40 articles.
1. Cermak, J., Wild, M., Knutti, R., Mishchenko, M. I., and Heidinger, A. K.: Consistency of global satellite-derived aerosol and cloud data sets with recent brightening observations, Geophys. Res. Lett., L21704, https://doi.org/10.1029/2010GL044632, 2010. 2. Giglio, L., Csiszar, I., and Justice, C. O.: Global distribution and seasonality of active fires as observed with the Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) sensors, J. Geophys. Res., 111, G02016, https://doi.org/10.1029/2005JG000142, 2006. 3. Herman, J. R., Labow, G., Hsu, N. C., and Larko, D.: Changes in cloud and aerosol cover (1980–2006) from reflectivity time series using SeaWiFS, N7-TOMS, EP-TOMS, SBUV-2, and OMI radiance data, J. Geophys. Res., 114, D01201, https://doi.org/10.1029/2007JD009508, 2009. 4. Holben, B. N., Eck, T. F., Slutsker, I., Tanré, D., Buis, J. P., Setzer, A., Vermote, E., Reagan, J. A., Kaufman, Y. J., Nakajima, T., Lavenu, F., Jankowiak, I., and Smirnov, A.: AERONET – A Federated Instrument Network and Data Archive for Aerosol Characterization, Remote Sens. Environ., 66, 1–16, 1998. 5. Kahn, R. A., Garay, M. J., Nelson, D. L., Yau, K. K., Bull, M. A., Gaitley, B. J., Martonchik, J. V., and Levy, R. C.: Satellite-derived aerosol optical depth over dark water from MISR and MODIS: Comparisons with AERONET and implications for climatological studies, J. Geophys. Res., 112, D18205, https://doi.org/10.1029/2006JD008175, 2007.
Cited by
314 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|