Water-soluble SOA from Alkene ozonolysis: composition and droplet activation kinetics inferences from analysis of CCN activity
-
Published:2010-02-15
Issue:4
Volume:10
Page:1585-1597
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Asa-Awuku A.,Nenes A.,Gao S.,Flagan R. C.,Seinfeld J. H.
Abstract
Abstract. Cloud formation characteristics of the water-soluble organic fraction (WSOC) of secondary organic aerosol (SOA) formed from the ozonolysis of alkene hydrocarbons (terpinolene, 1-methlycycloheptene and cycloheptene) are studied. Based on size-resolved measurements of CCN activity (of the pure and salted WSOC samples) we estimate the average molar volume and surface tension depression associated with the WSOC using Köhler Theory Analysis (KTA). Consistent with known speciation, the results suggest that the WSOC are composed of low molecular weight species, with an effective molar mass below 200 g mol−1. The water-soluble carbon is also surface-active, depressing surface tension 10–15% from that of pure water (at CCN-relevant concentrations). The inherent hygroscopicity parameter, κ, of the WSOC ranges between 0.17 and 0.25; if surface tension depression and molar volume effects are considered in κ, a remarkably constant "apparent" hygroscopicity ~0.3 emerges for all samples considered. This implies that the volume fraction of soluble material in the parent aerosol is the key composition parameter required for prediction of the SOA hygroscopicity, as shifts in molar volume across samples are compensated by changes in surface tension. Finally, using "threshold droplet growth analysis", the water-soluble organics in all samples considered do not affect CCN activation kinetics.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference69 articles.
1. Alfarra, M. R., Paulsen, D., Gysel, M., Garforth, A. A., Dommen, J., Prevot, A. S. H., Worsnop, D. R., Baltensperger, U., and Coe, H.: A mass spectrometric study of secondary organic aerosols formed from the photooxidation of anthropogenic and biogenic precursors in a reaction chamber, Atmos. Chem. Phys., 6, 5279–5293, 2006. 2. Andreae, M. O. and Crutzen, P. J.: Atmospheric aerosols: Biogeochemical sources and role in atmospheric chemistry, Science, 276, 1052–1058, 1997. 3. Asa-Awuku, A., Nenes, A., Sullivan, A., Hennigan, C. J., and Weber, R. J.: Investigation of molar volume and surfactant characteristics of water-soluble organic compounds in biomass burning aerosol, Atmos. Chem. Phys., 8, 799–812, 2008. 4. Asa-Awuku, A., Engelhart, G. J., Lee, B. H., Pandis, S. N., and Nenes, A.: Relating CCN activity, volatility, and droplet growth kinetics of $\\beta $-caryophyllene secondary organic aerosol, Atmos. Chem. Phys., 9, 795–812, 2009 5. Aschmann, S. M., Atkinson, R., and Arey, J.: Products of reaction of OH radicals with alpha-pinene, J. Geophys. Res.-A., 107, 4191, https://doi.org/10.1029/2001JD001098, 2002.
Cited by
85 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|