Global atmospheric model for mercury including oxidation by bromine atoms

Author:

Holmes C. D.,Jacob D. J.,Corbitt E. S.,Mao J.,Yang X.,Talbot R.,Slemr F.

Abstract

Abstract. Global models of atmospheric mercury generally assume that gas-phase OH and ozone are the main oxidants converting Hg0 to HgII and thus driving mercury deposition to ecosystems. However, thermodynamic considerations argue against the importance of these reactions. We demonstrate here the viability of atomic bromine (Br) as an alternative Hg0 oxidant. We conduct a global 3-D simulation with the GEOS-Chem model assuming gas-phase Br to be the sole Hg0 oxidant (Hg + Br model) and compare to the previous version of the model with OH and ozone as the sole oxidants (Hg + OH/O3 model). We specify global 3-D Br concentration fields based on our best understanding of tropospheric and stratospheric Br chemistry. In both the Hg + Br and Hg + OH/O3 models, we add an aqueous photochemical reduction of HgII in cloud to impose a tropospheric lifetime for mercury of 6.5 months against deposition, as needed to reconcile observed total gaseous mercury (TGM) concentrations with current estimates of anthropogenic emissions. This added reduction would not be necessary in the Hg + Br model if we adjusted the Br oxidation kinetics downward within their range of uncertainty. We find that the Hg + Br and Hg + OH/O3 models are equally capable of reproducing the spatial distribution of TGM and its seasonal cycle at northern mid-latitudes. The Hg + Br model shows a steeper decline of TGM concentrations from the tropics to southern mid-latitudes. Only the Hg + Br model can reproduce the springtime depletion and summer rebound of TGM observed at polar sites; the snowpack component of GEOS-Chem suggests that 40% of HgII deposited to snow in the Arctic is transferred to the ocean and land reservoirs, amounting to a net deposition flux to the Arctic of 60 Mg a−1. Summertime events of depleted Hg0 at Antarctic sites due to subsidence are much better simulated by the Hg + Br model. Model comparisons to observed wet deposition fluxes of mercury in the US and Europe show general consistency. However the Hg + Br model does not capture the summer maximum over the southeast US because of low subtropical Br concentrations while the Hg + OH/O3 model does. Vertical profiles measured from aircraft show a decline of Hg0 above the tropopause that can be captured by both the Hg + Br and Hg + OH/O3 models, except in Arctic spring where the observed decline is much steeper than simulated by either model; we speculate that oxidation by Cl species might be responsible. The Hg + Br and Hg + OH/O3 models yield similar global budgets for the cycling of mercury between the atmosphere and surface reservoirs, but the Hg + Br model results in a much larger fraction of mercury deposited to the Southern Hemisphere oceans.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference153 articles.

1. Ababneh, F. A., Scott, S. L., Al-Reasi, H. A., and Lean, D. R. S.: Photochemical reduction and reoxidation of aqueous mercuric chloride in the presence of ferrioxalate and air, Sci. Total Environ., 367, 831–839, https://doi.org/{10.1016/j.scitotenv.2006.02.018}, 2006.

2. Ariya, P. A., Khalizov, A., and Gidas, A.: Reactions of gaseous mercury with atomic and molecular halogens: Kinetics, product studies, and atmospheric implications, J. Phys. Chem. A, 106, 7310–7320, https://doi.org/{10.1021/jp020719o}, 2002.

3. Ariya, P., Dastoor, A., Amyot, M., Schroeder, W., Barrie, L., Anlauf, K., Raofie, F., Ryzhkov, A., Davignon, D., Lalonde, J., and Steffen, A.: The {Arctic}: a sink for mercury, Tellus B, 56, 397–403, 2004.

4. Ariya, P. A., Skov, H., Grage, M. M. L., and Goodsite, M. E.: Gaseous elemental mercury in the ambient atmosphere: Review of the application of theoretical calculations and experimental studies for determination of reaction coefficients and mechanisms with halogens and other reactants, Adv. Quantum. Chem., 55, 43–55, https://doi.org/{10.1016/S0065-3276(07)00204-3}, 2008.

5. Ariya, P., Peterson, K., Snider, G., and Amyot, M.: Mercury chemical transformation in the gas, aqueous and heterogeneous phases: state-of-the-art science and uncertainties, in: Mercury Fate and Transport in the Global Atmosphere, edited by: Pirrone, N. and Mason, R. P., Springer, 2009.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3