Ice nucleation and cloud microphysical properties in tropical tropopause layer cirrus
-
Published:2010-02-05
Issue:3
Volume:10
Page:1369-1384
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Jensen E. J.,Pfister L.,Bui T.-P.,Lawson P.,Baumgardner D.
Abstract
Abstract. In past modeling studies, it has generally been assumed that the predominant mechanism for nucleation of ice in the uppermost troposphere is homogeneous freezing of aqueous aerosols. However, recent in situ and remote-sensing measurements of the properties of cirrus clouds at very low temperatures in the tropical tropopause layer (TTL) are broadly inconsistent with theoretial predictions based on the homogeneous freezing assumption. The nearly ubiquitous occurence of gravity waves in the TTL makes the predictions from homogeneous nucleation theory particularly difficult to reconcile with measurements. These measured properties include ice number concentrations, which are much lower than theory predicts; ice crystal size distributions, which are much broader than theory predicts; and cloud extinctions, which are much lower than theory predicts. Although other explanations are possible, one way to limit ice concentrations is to have on the order of 50 L−1 effective ice nuclei (IN) that could nucleate ice at relatively low supersaturations. We suggest that ammonium sulfate particles, which would be dry much of the time in the cold TTL, are a potential IN candidate for TTL cirrus. However, this mechanism remains to be fully quantified for the size distribution of ammonium sulfate (possibly internally mixed with organics) actually present in the upper troposphere. Possible implications of the observed cloud microphysical properties for ice sedimentation, dehydration, and cloud persistence are also discussed.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference62 articles.
1. Abbatt, J. P. D., Benz, S., Cziczo, D. J., Kanji, Z., Lohmann, U., and Möhler, O.: Solid ammonium sulfate aerosols as ice nuclei: A pathway for cirrus formation, Science, 313, 1770–1773, 2006. 2. Ackerman, T. P., Liou, K. N., Valero, F. P., and Pfister, L.: Heating rates in tropical anvils, J. Atmos. Sci., 45, 1606–1623, 1988. 3. Anselmo, T., Clifton, R., Hunt, W., Lee, K.-P., Murray, T., Powell, K., Rodier, S. D., Vaughan, M., Chometter, O., Viollier, M., Hagolle, O., Lifermann, A., Garnier, A., Pelon, J., Currey, J. C., Pitts, M., and Winker, D.: Cloud-Aerosol Lidar Infrared Pathfinder Satellite Observations Data Management System Data Products Catalog, PC-SCI-503, 2007. 4. Archuleta, C. M., DeMott, P. J., and Kreidenweis, S. M.: Ice nucleation by surrogates for atmospheric mineral dust and mineral dust/sulfate particles at cirrus temperatures, Atmos. Chem. Phys., 5, 2617–2634, 2005. 5. Bacmeister, J. T., Eckermann, S. D., Newman, P. A., Lait, L., Chan, K. R., Loewenstein, M., Proffitt, M. H., and Gary, B.: Stratospheric horizontal wavenumber spectra of winds, potential temperature, and atmospheric tracers observed by high altitude aircraft, J. Geophys. Res., 101, 9441–9470, 1996.
Cited by
105 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|