Review and parameterisation of bi-directional ammonia exchange between vegetation and the atmosphere
-
Published:2010-11-04
Issue:21
Volume:10
Page:10359-10386
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Massad R.-S.,Nemitz E.,Sutton M. A.
Abstract
Abstract. Current deposition schemes used in atmospheric chemical transport models do not generally account for bi-directional exchange of ammonia (NH3). Bi-directional exchange schemes, which have so far been applied at the plot scale, can be included in transport models, but need to be parameterised with appropriate values of the ground layer compensation point (χg), stomatal compensation point (χs) and cuticular resistance (Rw). We review existing measurements of χg, χs as well as Rw and compile a comprehensive dataset from which we then propose generalised parameterisations. χs is related to Γs, the non-dimensional ratio of [NH4+]apo and [H+]apo in the apoplast, through the temperature dependence of the combined Henry and dissociation equilibrium. The meta-analysis suggests that the nitrogen (N) input is the main driver of the apoplastic and bulk leaf concentrations of ammonium (NH4 apo
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference151 articles.
1. Adams, P. J., Seinfeld, J. H., Koch, D., Mickley, L., and Jacob, D.: General circulation model assessment of direct radiative forcing by the sulfate-nitrate-ammonium-water inorganic aerosol system. J. Geophys. Res-Atmos., 106, 1097–1111, 2001. 2. Andersen, H. V., Hovmand, M. F., Hummelshoj, P., and Jensen, N. O.: Measurements of ammonia concentrations, fluxes and dry deposition velocities to a spruce forest 1991–1995, Atmos. Environ., 33, 1367–1383, 1999. 3. Bleeker, A., Sutton, M. A., Acherman, B., Alebic-Juretic, A., Aneja, V. P., Ellermann, T., Erisman, J. W., Fowler, D., Fagerli, H., Gauger, T., Harlen, K. S., Hole, L. R., Horvath, L., Mitosinkova, M., Smith, R. I., Tang, Y. S., and Pul, A.: Linking ammonia emission trends to measured concentrations and deposition of reduced nitrogen at different scales, in: Atmospheric Ammonia – Detecting emission changes and environmental impacts. Results of an expert workshop under the convention of long-range transboundary air pollution, edited by: Sutton M. A., Reis S., Baker S. M. H. , Atmospheric Ammonia – Detecting emission changes and environmental impacts. Results of an expert workshop under the convention of long-range transboundary air pollution, Springer, 123–180, 2009. 4. Burkhardt, J., Flechard, C. R., Gresens, F., Mattsson, M., Jongejan, P. A. C., Erisman, J. W., Weidinger, T., Meszaros, R., Nemitz, E., and Sutton, M. A.: Modelling the dynamic chemical interactions of atmospheric ammonia with leaf surface wetness in a managed grassland canopy, Biogeosciences, 6, 67–84, https://doi.org/10.5194/bg-6-67-2009, 2009. 5. Byun, D. and Schere, K. L.: Review of the Governing Equations, Computational Algorithms, and Other Components of the Models-3 Community Multiscale Air Quality (CMAQ) Modeling System, Appl. Mech. Rev., 59, 51–77, 2006.
Cited by
188 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|