Climatologies of subtropical mixing derived from 3D models

Author:

Eyring V.,Dameris M.,Grewe V.,Langbein I.,Kouker W.

Abstract

Abstract. Fingerlike structures reaching from lower into extra-tropical latitudes significantly contribute to the tropical-extratropical exchange of air masses. This is also an exchange of upper tropospheric and stratospheric air. Those so called streamers can, on a horizontal plane, be detected in N2O or O3 since they are characterised by high N2O or low O3 values compared to undisturbed mid-latitude values. A climatology of streamer events has been established, employing the chemical-transport model KASIMA, which is driven by ECMWF re-analyses (ERA) and operational analyses. For the first time, the seasonal and geographical distribution of streamer frequencies has been determined on the basis of 9 years of meteorological analyses. For the current investigation, a meridional gradient criterion has been newly formulated and applied to the N2O distributions calculated with KASIMA. A climatology has been derived by counting all streamer events between 21 and 25 km for the years 1990 to 1998. The results have been compared with a streamer climatology which has been established in the same way employing data of a multi-year simulation with the coupled chemistry-climate model ECHAM4.L39(DLR)/CHEM (E39/C). Both climatologies are qualitatively in agreement, in particular in the northern hemisphere, where much higher streamer frequencies are found in winter than in summer. In the southern hemisphere, the KASIMA analyses indicate strongest streamer activity in September. E39/C streamer frequencies clearly displays an offset from June to October, pointing to model deficiencies with respect to tropospheric dynamics. KASIMA and E39/C results agree well from November to May. Some of the findings give strong indications that the streamer events found in the altitude region between 21 and 25 km are mainly forced from the troposphere and are not directly related to the dynamics of the stratosphere, in particular not to the dynamics of the polar vortex. Sensitivity simulations with E39/C, which represent recent and possible future atmospheric conditions, have been employed to answer the question how climate change would alter streamer frequencies. This shows that the seasonal cycle does not change but that significant changes occur in months of minimum and maximum streamer frequencies. This could have an impact on the mid-latitude distribution of chemical tracers and compounds.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3