Development and evaluation of an operational SDS forecasting system for East Asia: CUACE/Dust
-
Published:2008-02-18
Issue:4
Volume:8
Page:787-798
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Zhou C. H.,Gong S. L.,Zhang X. Y.,Wang Y. Q.,Niu T.,Liu H. L.,Zhao T. L.,Yang Y. Q.,Hou Q.
Abstract
Abstract. CUACE/Dust, an operational mesoscale sand and dust storm (SDS) forecasting system for East Asia, has been developed by online coupling a dust aerosol emission scheme and dust aerosol microphysics onto a regional meteorological model with improved advection and diffusion schemes and a detailed Northeast Asia soil erosion database. With improved initial dust aerosol conditions through a 3-DVar data assimilation system, CUACE/Dust successfully forecasted most of the 31 SDS processes in East Asia. A detailed comparison of the model predictions for the 8–12 March SDS process with surface network observations and lidar measurements revealed a robust forecasting ability of the system. The time series of the operationally forecasted dust concentrations for a number of representative stations for the whole spring 2006 (1 March–31 May) were evaluated against surface PM10 monitoring data, showing a good agreement in terms of the SDS timing and magnitudes at and near the source regions where dust aerosols dominate. For the operational forecasts of spring 2006 in East Asia, a TS (threat score) system evaluated the performance of CUACE/Dust against all available observations and rendered a spring averaged TS value of 0.31 for FT1 (24 h forecasts), 0.23 for FT2 (48 h forecasts) and 0.21 for FT3 (72 h forecasts).
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference32 articles.
1. Alfaro, S. C., Gaudichet, A., Gomes, L., and Maillé, M.: Modeling the size distribution of a soil aerosol produced by sandblasting, J. Geophys. Res, 102, 11 239–11 249, 1997. 2. Alfaro, S. C. and Gomes, L.: Modeling mineral aerosol production by wind erosion: Emission intensities and aerosol size distribution in source areas, J. Geophys. Res., 106, 18 075–18 084, 2001. 3. Alpert, P., Krichak, S. O., Tsidulko, M., Shafir, H., and Joseph, J. H.: A dust prediction system with toms initialization, Mon. Weather Rev., 130, 2335–2345, 2002. 4. Beijing-EPA: Annual report of environment in beijing, 2006 (in Chinese). 5. Gong, S. L., Barrie, L. A., Blanchet, J.-P., Salzen, K. v., Lohmann, U., Lesins, G., Spacek, L., Zhang, L. M., Girard, E., Lin, H., Leaitch, R., Leighton, H., Chylek, P., and Huang, P.: Canadian aerosol module: A size-segregated simulation of atmospheric aerosol processes for climate and air quality models 1. Module development, J. Geophys. Res., 108, 4007, https://doi.org/4010.1029/2001JD002002, 2003a.
Cited by
57 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|