Experimental induction of resins as a tool to understand variability in ambers

Author:

Seyfullah Leyla J.ORCID,Roberts Emily A.,Jardine Phillip E.ORCID,Schmidt Alexander R.

Abstract

Abstract. Amber is chiefly known as a preservational medium of biological inclusions, but it is itself a chemofossil, comprised of fossilised plant resin. The chemistry of today's resins has been long investigated as a means of understanding the botanical sources of ambers. However, little is known about the chemical variability of resins and consequently about that of the ambers that are derived from particular resins. We undertook experimental resin production in Araucariacean plants to clarify how much natural resin variability is present in two species, Agathis australis and Wollemia nobilis, and whether different resin exudation stimuli types can be chemically identified and differentiated. The latter were tested on the plants, and the resin exudates were collected and investigated with Fourier-transform infrared attenuated total reflection (FTIR-ATR) spectroscopy to give an overview of their chemistry for comparisons, including multivariate analyses. The Araucariacean resins tested did not show distinct chemical signatures linked to a particular resin-inducing treatment. Nonetheless, we did detect two separate groupings of the treatments for Agathis, in which the branch removal treatment and mimicked insect-boring treatment-derived resin spectra were more different from the resin spectra derived from other treatments. This appears linked to the lower resin viscosities observed in the branch- and insect-treatment-derived resins. However the resins, no matter the treatment, could be distinguished from both species. The effect of genetic variation was also considered using the same stimuli on both the seed-grown A. australis derived from wild-collected populations and on clonally derived W. nobilis plants with natural minimal genetic diversity. The variability in the resin chemistries collected did reflect the genetic variability of the source plant. We suggest that this natural variability needs to be taken into account when testing resin and amber chemistries in the future.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Pensoft Publishers

Reference40 articles.

1. Aquilina, L., Girard, V., Hénin, O., Bouhnik-Le Coz, M., Vilbert, D., Perrichot, V., and Néraudeau, D.: Amber inorganic geochemistry: new insight into the environmental processes in a Cretaceous forest of France, Palaeogeogr. Palaeocl., 369, 220–227, https://doi.org/10.1016/j.palaeo.2012.10.023, 2013.

2. Beltran, V., Salvadó, N., Butí, S., and Pradell, T.: Ageing of resin from Pinus species assessed by infrared spectroscopy, Anal. Bioanal. Chem., 408, 4073–4082, https://doi.org/10.1007/s00216-016-9496-x, 2016.

3. Dal Corso, J., Roghi, G., Ragazzi, E., Angelini, I., Giaretta, A., Soriano, C., Delclòs, X., and Jenkyns, H. C.: Physico-chemical analysis of Albian (Lower Cretaceous) amber from San Just (Spain): implications for palaeoenvironmental and palaeoecological studies, Geol. Acta, 11, 359–370, https://doi.org/10.1344/105.000001871, 2013.

4. Dal Corso, J., Schmidt, A. R., Seyfullah, L. J., Preto, N., Ragazzi, E., Jenkyns, H. C., Delclòs, X., Néraudeau, D., and Roghi, G.: Evaluating the use of amber in palaeoatmospheric reconstructions: the carbon-isotope variability of modern and Cretaceous conifer resins, Geochim. Cosmochim. Ac. 199, 351–369, https://doi.org/10.1016/j.gca.2016.11.025, 2017.

5. Dutta, S., Mehrotra, R. C., Paul, S., Tiwari, R. P., Bhattacharya, S., Srivastava, G., Ralte, V. Z., and Zoramthara, C.: Remarkable preservation of terpenoids and record of volatile signalling in plant-animal interactions from Miocene amber, Sci. Rep.-UK, 7, 10940, https://doi.org/10.1038/s41598-017-09385-w, 2017.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3