The North American Carbon Program Multi-scale Synthesis and Terrestrial Model Intercomparison Project – Part 2: Environmental driver data
-
Published:2014-12-05
Issue:6
Volume:7
Page:2875-2893
-
ISSN:1991-9603
-
Container-title:Geoscientific Model Development
-
language:en
-
Short-container-title:Geosci. Model Dev.
Author:
Wei Y.ORCID, Liu S., Huntzinger D. N., Michalak A. M., Viovy N., Post W. M., Schwalm C. R., Schaefer K., Jacobson A. R., Lu C., Tian H.ORCID, Ricciuto D. M.ORCID, Cook R. B., Mao J., Shi X.ORCID
Abstract
Abstract. Ecosystems are important and dynamic components of the global carbon cycle, and terrestrial biospheric models (TBMs) are crucial tools in further understanding of how terrestrial carbon is stored and exchanged with the atmosphere across a variety of spatial and temporal scales. Improving TBM skills, and quantifying and reducing their estimation uncertainties, pose significant challenges. The Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP) is a formal multi-scale and multi-model intercomparison effort set up to tackle these challenges. The MsTMIP protocol prescribes standardized environmental driver data that are shared among model teams to facilitate model–model and model–observation comparisons. This paper describes the global and North American environmental driver data sets prepared for the MsTMIP activity to both support their use in MsTMIP and make these data, along with the processes used in selecting/processing these data, accessible to a broader audience. Based on project needs and lessons learned from past model intercomparison activities, we compiled climate, atmospheric CO2 concentrations, nitrogen deposition, land use and land cover change (LULCC), C3 / C4 grasses fractions, major crops, phenology and soil data into a standard format for global (0.5° × 0.5° resolution) and regional (North American: 0.25° × 0.25° resolution) simulations. In order to meet the needs of MsTMIP, improvements were made to several of the original environmental data sets, by improving the quality, and/or changing their spatial and temporal coverage, and resolution. The resulting standardized model driver data sets are being used by over 20 different models participating in MsTMIP. The data are archived at the Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC, http://daac.ornl.gov) to provide long-term data management and distribution.
Publisher
Copernicus GmbH
Reference91 articles.
1. Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P. P., Janowiak, J., Rudolf, B., Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Susskind, J., Arkin, P., and Nelkin, E.: The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present), J. Hydrometeorol., 4, 1147–1167, https://doi.org/10.1175/1525-7541(2003)0042.0.CO;2, 2003. 2. Ainsworth, E. A. and Long, S. P.: What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2, New Phytol., 165, 351–372, https://doi.org/10.1111/j.1469-8137.2004.01224.x, 2005. 3. Batjes, N. H.: ISRIC-WISE Global Data Set of Derived Soil Properties on a 0.5 by 0.5 Degree Grid (Version 3.0), ISRIC-World Soil Information, Wageningen, 2005. 4. Batjes, N. H.: ISRIC-WISE Harmonized Global Soil Profile Dataset (Version 3.1), ISRIC-World Soil Information, Wageningen, 2008. 5. Bohn, T. J., Livnehb, B., Oylerc, W. J., Runningc, W. S., Nijssena, B., and Lettenmaiera, P. D.: Global evaluation of MTCLIM and related algorithms for forcing of ecological and hydrological models, Agr. Forest. Meteorol., 176, 38–49, https://doi.org/10.1016/j.agrformet.2013.03.003, 2013.
Cited by
198 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|