Significant impact of the East Asia monsoon on ozone seasonal behavior in the boundary layer of Eastern China and the west Pacific region
-
Published:2008-12-17
Issue:24
Volume:8
Page:7543-7555
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
He Y. J.,Uno I.,Wang Z. F.,Pochanart P.,Li J.,Akimoto H.
Abstract
Abstract. The impact of the East Asia monsoon on the seasonal behavior of O3 in the boundary layer of Eastern China and the west Pacific region was analyzed for 2004–2006 by means of full-year nested chemical transport model simulations and continuous observational data obtained from three inland mountain sites in central and eastern China and three oceanic sites in the west Pacific region. The basic common features of O3 seasonal behaviors over all the monitoring sites are the pre- and post-monsoon peaks with a summer trough. Such bimodal seasonal patterns of O3 are predominant over the region with strong summer monsoon penetration, and become weaker or even disappear outside the monsoon region. The seasonal/geographical distribution of the pre-defined monsoon index indicated that the East Asia summer monsoon is responsible for the bimodal seasonal O3 pattern, and also partly account for the differences in the O3 seasonal variations between the inland mountain and oceanic sites. Over the inland mountain sites, the O3 concentration increased gradually from the beginning of the year, reached a maximum in June, decreased rapidly to the summer valley in July or August, and then peaked in September or October, thereafter decreased gradually again. Over the oceanic sites, O3 abundance showed a similar increasing trend beginning in January, but then decreased gradually from the end of March, followed by a wide trough with the minimum in July and August and a small peak in October or November. A sensitivity analysis performed by setting China-emission to zero revealed that the chemically produced O3 from China-emission contributed substantially to the O3 abundance, particularly the pre- and post-monsoon O3 peaks, over China mainland. We found that China-emission contributed more than 40% to total boundary layer O3 during summertime (60–70% in July) and accounted for about 40 ppb of each peak value over the inland region if without considering the effect of the nonlinear chemical productions. In contrast, over the oceanic region in the high monsoon index zone, the contribution of China-emission to total boundary layer O3 was always less than 20% (<10 ppb), and less than 10% in summer.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference40 articles.
1. % vor jede Referenz Ahammed, Y. N., Reddy, R. R., Gopal, K. R., Narasimhulu, K. B., Baba, D., Reddy, L. S., and Rao, T. V.: Seasonal variation of the surface ozone and its precursor gases during 2001–2003, measured at Anantapur (14.62° N), a semi-arid site in India, Atmos. Res., 80(2–3), 151–164, 2006. 2. Akimoto, H., Mukai, H., Nishikawa, M., Murano, K., Hatakeyama, S., Liu, C. M., Buhr, M., Hsu, K. J., Jaffe, D. A., Zhang, L., Honrath, R., Merrill, J. T., and Newell, R. E.: Long-range transport of ozone in the East Asian Pacific rim region, J. Geophys. Res., 101(D1), 1999–2010, 1996. 3. Byun, D. W. and Ching, J. K. S.: Science algorithms of the EPA Models-3 community multi-scale air quality (CMAQ) modeling system. National Exposure Research Laboratory, Research Triangle Park, Washington, DC, USA, EPA/600/R99/030, 1999. 4. Chan, L. Y., Liu, H. Y., Lam, K. S., Wang, T., Oltmans, S. J., and Harris, J. M.: Analysis of the seasonal behavior of tropospheric ozone at Hong Kong, Atmos. Environ., 32(2), 159–168, 1998. 5. Ding, A. J., Wang, T., Thouret, V., Cammas, J.-P., and Nédélec, P.: Tropospheric ozone climatology over Beijing: analysis of aircraft data from the MOZAIC program, Atmos. Chem. Phys., 8, 1–13, 2008.
Cited by
75 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|