Checkerboard patterns in E3SMv2 and E3SM-MMFv2
-
Published:2022-08-12
Issue:15
Volume:15
Page:6243-6257
-
ISSN:1991-9603
-
Container-title:Geoscientific Model Development
-
language:en
-
Short-container-title:Geosci. Model Dev.
Author:
Hannah Walter, Pressel Kyle, Ovchinnikov Mikhail, Elsaesser GregoryORCID
Abstract
Abstract. An unphysical checkerboard pattern is identified in E3SMv2 and E3SM-MMF that is detectable across a wide range of timescales, from instantaneous snapshots to multi-year averages. A detection method is developed to quantify characteristics of the checkerboard signal by cataloguing all possible configurations of the eight adjacent neighbors for each cell on the model's cubed sphere grid using daily mean data. The checkerboard pattern is only found in cloud-related quantities, such as precipitation and liquid water path. Instances of pure and partial checkerboard are found to occur more often in E3SMv2 and E3SM-MMF when compared to satellite data regridded to the model grid. Continuous periods of partial checkerboard state are found to be more persistent in both models compared to satellite data, with E3SM-MMF exhibiting more persistence than E3SMv2. The checkerboard signal in E3SMv2 is found to be a direct consequence of the recently added deep convective trigger condition based on dynamically generated CAPE (DCAPE). In E3SM-MMF the checkerboard signal is found to be associated with the “trapping” of cloud-scale fluctuations within the embedded cloud-resolving model. Solutions to remedy this issue are discussed.
Funder
Office of Science National Aeronautics and Space Administration
Publisher
Copernicus GmbH
Reference28 articles.
1. Anjum, M. N., Ding, Y., Shangguan, D., Ahmad, I., Ijaz, M. W., Farid, H. U.,
Yagoub, Y. E., Zaman, M., and Adnan, M.: Performance evaluation of latest
integrated multi-satellite retrievals for Global Precipitation Measurement
(IMERG) over the northern highlands of Pakistan, Atmos. Res., 205, 134–146, https://doi.org/10.1016/J.ATMOSRES.2018.02.010, 2018. a 2. Benedict, J. J. and Randall, D.: Structure of the Madden-Julian oscillation in
the superparameterized CAM, J. Atmos. Sci., 66, 3277–3296,
https://doi.org/10.1175/2009JAS3030.1, 2009. a 3. E3SM Project: Energy Exascale Earth System Model (E3SM) [software], https://doi.org/10.11578/E3SM/dc.20210927.1, 2021. a 4. Elsaesser, G. S., O'Dell, C. W., Lebsock, M. D., Bennartz, R., Greenwald,
T. J., and Wentz, F. J.: The Multisensor Advanced Climatology of Liquid
Water Path (MAC-LWP), J. Climate, 30, 10193–10210,
https://doi.org/10.1175/JCLI-D-16-0902.1, 2017. a, b 5. Golaz, J., Caldwell, P. M., Van Roekel, L. P., Petersen, M. R., Tang, Q.,
Wolfe, J. D., Abeshu, G., Anantharaj, V., Asay‐Davis, X. S., Bader, D. C.,
Baldwin, S. A., Bisht, G., Bogenschutz, P. A., Branstetter, M., Brunke,
M. A., Brus, S. R., Burrows, S. M., Cameron‐Smith, P. J., Donahue, A. S.,
Deakin, M., Easter, R. C., Evans, K. J., Feng, Y., Flanner, M., Foucar,
J. G., Fyke, J. G., Griffin, B. M., Hannay, C., Harrop, B. E., Hunke, E. C.,
Jacob, R. L., Jacobsen, D. W., Jeffery, N., Jones, P. W., Keen, N. D., Klein,
S. A., Larson, V. E., Leung, L. R., Li, H., Lin, W., Lipscomb, W. H., Ma, P.,
Mahajan, S., Maltrud, M. E., Mametjanov, A., McClean, J. L., McCoy, R. B.,
Neale, R. B., Price, S. F., Qian, Y., Rasch, P. J., Reeves Eyre, J. J.,
Riley, W. J., Ringler, T. D., Roberts, A. F., Roesler, E. L., Salinger,
A. G., Shaheen, Z., Shi, X., Singh, B., Tang, J., Taylor, M. A., Thornton,
P. E., Turner, A. K., Veneziani, M., Wan, H., Wang, H., Wang, S., Williams,
D. N., Wolfram, P. J., Worley, P. H., Xie, S., Yang, Y., Yoon, J., Zelinka,
M. D., Zender, C. S., Zeng, X., Zhang, C., Zhang, K., Zhang, Y., Zheng, X.,
Zhou, T., and Zhu, Q.: The DOE E3SM coupled model version 1: Overview and
evaluation at standard resolution, J. Adv. Model. Earth
Sy., 11, 2018MS001603, https://doi.org/10.1029/2018MS001603, 2019. a
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|