Simulations of aerosol pH in China using WRF-Chem (v4.0): sensitivities of aerosol pH and its temporal variations during haze episodes

Author:

Ruan XueyinORCID,Zhao Chun,Zaveri Rahul A.ORCID,He Pengzhen,Wang XinmingORCID,Shao Jingyuan,Geng Lei

Abstract

Abstract. Aerosol pH is a fundamental property of aerosols in terms of atmospheric chemistry and its impact on air quality, climate, and health. Precise estimation of aerosol pH in chemical transport models (CTMs) is critical for aerosol modeling and thus influences policy development that partially relies on results from model simulations. We report the Weather Research and Forecasting Model coupled with Chemistry (WRF-Chem) simulated PM2.5 pH over China during a period with heavy haze episodes in Beijing, and explore the sensitivity of the modeled aerosol pH to factors including emissions of nonvolatile cations (NVCs) and NH3, aerosol phase state assumption, and heterogeneous production of sulfate. We find that default WRF-Chem could predict spatial patterns of PM2.5 pH over China similar to other CTMs, but with generally lower pH values, largely due to the underestimation of alkaline species (NVCs and NH3) and the difference in thermodynamic treatments between different models. Increasing NH3 emissions in the model would improve the modeled pH in comparison with offline thermodynamic model calculations of pH constrained by observations. In addition, we find that the aerosol phase state assumption and heterogeneous sulfate production are important in aerosol pH predictions for regions with low relative humidity (RH) and high anthropogenic SO2 emissions, respectively. These factors should be better constrained in model simulations of aerosol pH in the future. Analysis of the modeled temporal trend of PM2.5 pH in Beijing over a haze episode reveals a clear decrease in pH from 5.2 ± 0.9 in a clean period to 3.6 ± 0.5 in a heavily polluted period. The increased acidity under more polluted conditions is largely due to the formation and accumulation of secondary species including sulfuric acid and nitric acid, even though being modified by alkaline species (NVCs, NH3). Our result suggests that NO2 oxidation is unlikely to be important for heterogeneous sulfate production during the Beijing haze as the effective pH for NO2 oxidation of S(IV) is at a higher pH of ∼ 6.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Natural Science Foundation of Anhui Province

West Anhui University

Publisher

Copernicus GmbH

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3