Synergy between satellite observations of soil moisture and water storage anomalies for runoff estimation

Author:

Camici Stefania,Giuliani Gabriele,Brocca LucaORCID,Massari Christian,Tarpanelli AngelicaORCID,Farahani Hassan Hashemi,Sneeuw NicoORCID,Restano Marco,Benveniste JérômeORCID

Abstract

Abstract. This paper presents an innovative approach, STREAM – SaTellite-based Runoff Evaluation And Mapping – to derive daily river discharge and runoff estimates from satellite observations of soil moisture, precipitation, and total water storage anomalies (TWSAs). Within a very simple model structure, precipitation and soil moisture data are used to estimate the quick-flow river discharge component while TWSAs are used for obtaining its complementary part, i.e., the slow-flow river discharge component. The two are then added together to obtain river discharge estimates. The method is tested over the Mississippi River basin for the period 2003–2016 by using precipitation data from the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA), soil moisture data from the European Space Agency's Climate Change Initiative (ESA CCI), and total water storage data from the Gravity Recovery and Climate Experiment (GRACE). Despite the model simplicity, relatively high-performance scores are obtained in river discharge estimates, with a Kling–Gupta efficiency (KGE) index greater than 0.64 both at the basin outlet and over several inner stations used for model calibration, highlighting the high information content of satellite observations on surface processes. Potentially useful for multiple operational and scientific applications, from flood warning systems to the understanding of water cycle, the added value of the STREAM approach is twofold: (1) a simple modeling framework, potentially suitable for global runoff monitoring, at daily timescale when forced with satellite observations only, and (2) increased knowledge of natural processes and human activities as well as their interactions on the land.

Publisher

Copernicus GmbH

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3