Synergy between satellite observations of soil moisture and water storage anomalies for runoff estimation
-
Published:2022-09-15
Issue:18
Volume:15
Page:6935-6956
-
ISSN:1991-9603
-
Container-title:Geoscientific Model Development
-
language:en
-
Short-container-title:Geosci. Model Dev.
Author:
Camici Stefania, Giuliani Gabriele, Brocca LucaORCID, Massari Christian, Tarpanelli AngelicaORCID, Farahani Hassan Hashemi, Sneeuw NicoORCID, Restano Marco, Benveniste JérômeORCID
Abstract
Abstract. This paper presents an innovative approach, STREAM – SaTellite-based Runoff Evaluation And Mapping – to derive daily river discharge and runoff
estimates from satellite observations of soil moisture, precipitation, and total water storage anomalies (TWSAs). Within a very simple model structure, precipitation and soil moisture data are used to estimate the quick-flow river discharge component while TWSAs are used for obtaining its complementary part, i.e., the slow-flow river discharge component. The two are then added together to obtain river discharge estimates. The method is tested over the Mississippi River basin for the period
2003–2016 by using precipitation data from the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA), soil moisture data from the European Space Agency's Climate Change Initiative (ESA CCI), and total water storage data from the Gravity Recovery and Climate Experiment (GRACE). Despite the model simplicity, relatively high-performance scores are
obtained in river discharge estimates, with a Kling–Gupta efficiency (KGE) index greater than 0.64 both at the basin outlet and over several inner stations used for model calibration, highlighting the high information content of satellite observations on surface processes. Potentially useful for multiple operational and scientific applications, from flood warning systems to the understanding of water cycle, the added value of the STREAM approach is twofold: (1) a simple modeling framework, potentially suitable for global runoff monitoring, at daily timescale when forced with satellite
observations only, and (2) increased knowledge of natural processes and human activities as well as their interactions on the land.
Publisher
Copernicus GmbH
Reference119 articles.
1. Albergel, C., Rüdiger, C., Carrer, D., Calvet, J.-C., Fritz, N., Naeimi, V., Bartalis, Z., and Hasenauer, S.: An evaluation of ASCAT surface soil moisture products with in-situ observations in Southwestern France, Hydrol. Earth Syst. Sci., 13, 115–124, https://doi.org/10.5194/hess-13-115-2009, 2009. 2. Alcamo, J., Döll, P., Henrichs, T., Kaspar, F., Lehner, B., Rösch, T., and Siebert, S.: Development and testing of the WaterGAP 2 global model of water use and availability, Hydrolog. Sci. J., 48, 317–337, https://doi.org/10.1623/hysj.48.3.317.45290, 2003. 3. Alexander, J. S., Wilson, R. C., and Green, W. R.: A brief history and summary of the effects of river engineering and dams on the Mississippi River system and delta, US Department of the Interior, US Geological Survey, 53, https://doi.org/10.3133/cir1375, 2012. 4. Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration – guidelines for computing crop water requirements, FAO Irrigation and Drainage Paper 56, FAO, Rome, 300, D05109, ISBN 92-5-104219-5, 1988. 5. Arabzadeh, A. and Behrangi, A.: Investigating Various Products of IMERG for Precipitation Retrieval Over Surfaces With and Without Snow and Ice Cover, Remote Sens.-Basel, 13, 2726, https://doi.org/10.3390/rs13142726, 2021.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|