Sensitivity of the adjoint method in the inversion of tsunami source parameters

Author:

Pires C.,Miranda P. M. A.

Abstract

Abstract. This paper tests a methodology for tsunami wave-form inversion, based on the adjoint method. The method is designed to perform the direct optimization of the tsunami fault parameters, from tide-gauge data, imposing strong geophysical constrains to the inverted solutions, leading to a substantial enhancement of the signal-to-noise ratio, when compared with the classical technique based on Green’s functions of the linear long-wave model. A 4-step inversion proce-dure, which can be fully automated, consists (i) in the source area delimitation by adjoint backward ray-tracing, (ii) ad-joint optimization of the initial sea state, from a vanishing first-guess, (iii) non-linear adjustment of the fault model and (iv) final adjoint optimization in the fault parameter space. That methodology is systematically tested with four different idealized bathymetry and coastline setups (flat bathymetry in an open domain, closed conical circular lake, islands in an open domain and submarine mountains in an open domain) and different amounts of synthetic observation data, and of observational and bathymetric errors. Results show that the method works well in the presence of reasonable amounts of error and it provides, as a by-product, a resolution matrix that contains information on the inversion error, identifying the combinations of source parameters that are best and worst resolved by the inversion

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3