Implementation of the sectional aerosol module SALSA2.0 into the PALM model system 6.0: model development and first evaluation
-
Published:2019-04-11
Issue:4
Volume:12
Page:1403-1422
-
ISSN:1991-9603
-
Container-title:Geoscientific Model Development
-
language:en
-
Short-container-title:Geosci. Model Dev.
Author:
Kurppa MonaORCID, Hellsten Antti, Roldin PontusORCID, Kokkola HarriORCID, Tonttila Juha, Auvinen MikkoORCID, Kent Christoph, Kumar Prashant, Maronga Björn, Järvi LeenaORCID
Abstract
Abstract. Urban pedestrian-level
air quality is a result of an interplay between turbulent dispersion
conditions, background concentrations, and heterogeneous local emissions of
air pollutants and their transformation processes. Still, the complexity of
these interactions cannot be resolved by the commonly used air quality
models. By embedding the sectional aerosol module SALSA2.0 into the
large-eddy simulation model PALM, a novel, high-resolution, urban aerosol
modelling framework has been developed. The first model evaluation study on
the vertical variation of aerosol number concentration and size distribution
in a simple street canyon without vegetation in Cambridge, UK, shows good
agreement with measurements, with simulated values mainly within a factor of
2 of observations. Dispersion conditions and local emissions govern the
pedestrian-level aerosol number concentrations. Out of different aerosol
processes, dry deposition is shown to decrease the total number concentration
by over 20 %, while condensation and dissolutional increase the total
mass by over 10 %. Following the model development, the application of
PALM can be extended to local- and neighbourhood-scale air pollution and
aerosol studies that require a detailed solution of the ambient flow field.
Publisher
Copernicus GmbH
Reference102 articles.
1. Ackermann, I. J., Hass, H., Memmesheimer, M., Ebel, A., Binkowski, F. S., and
Shankar, U.: Modal aerosol dynamics model for Europe: development and first
applications, Atmos. Environ., 32, 2981–2999,
https://doi.org/10.1016/S1352-2310(98)00006-5, 1998. a 2. Albriet, B., Sartelet, K., Lacour, S., Carissimo, B., and Seigneur, C.:
Modelling aerosol number distributions from a vehicle exhaust with an
aerosol CFD model, Atmos. Environ., 44, 1126–1137,
https://doi.org/10.1016/j.atmosenv.2009.11.025, 2010. a, b, c 3. Ankilov, A., Baklanov, A., Colhoun, M., Enderle, K.-H., Gras, J., Julanov,
Y., Kaller, D., Lindner, A., Lushnikov, A., Mavliev, R., McGovern, F., Mirme,
A., O'Connor, T., Podzimek, J., Preining, O., Reischl, G., Rudolf, R., Sem,
G., Szymanski, W., Tamm, E., Vrtala, A., Wagner, P., Winklmayr, W., and
Zagaynov, V.: Intercomparison of number concentration measurements by various
aerosol particle counters, Atmos. Res., 62, 177–207,
https://doi.org/10.1016/S0169-8095(02)00010-8, 2002. a 4. Antoniou, N., Montazeri, H., Wigo, H., Neophytou, M. K.-A., Blocken, B., and
Sandberg, M.: CFD and wind-tunnel analysis of outdoor ventilation in a real
compact heterogeneous urban area: Evaluation using “air delay”, Build.
Environ., 126, 355–372, https://doi.org/10.1016/j.buildenv.2017.10.013, 2017. a 5. Anttila, T., Kerminen, V.-M., and Lehtinen, K. E.: Parameterizing the
formation rate of new particles: The effect of nuclei self-coagulation, J.
Aerosol Sci., 41, 621–636, https://doi.org/10.1016/j.jaerosci.2010.04.008, 2010. a
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|