RTTOV-gb v1.0 – updates on sensors, absorption models, uncertainty, and availability

Author:

Cimini DomenicoORCID,Hocking James,De Angelis Francesco,Cersosimo Angela,Di Paola Francesco,Gallucci Donatello,Gentile SabrinaORCID,Geraldi Edoardo,Larosa SalvatoreORCID,Nilo SaverioORCID,Romano FilomenaORCID,Ricciardelli Elisabetta,Ripepi ErmannORCID,Viggiano Mariassunta,Luini Lorenzo,Riva Carlo,Marzano Frank S.,Martinet Pauline,Song Yun Young,Ahn Myoung HwanORCID,Rosenkranz Philip W.ORCID

Abstract

Abstract. This paper describes the first official release (v1.0) of RTTOV-gb. RTTOV-gb is a FORTRAN 90 code developed by adapting the atmospheric radiative transfer code RTTOV, focused on satellite-observing geometry, to the ground-based observing geometry. RTTOV-gb is designed to simulate ground-based upward-looking microwave radiometer (MWR) observations of atmospheric downwelling natural radiation in the frequency range from 22 to 150 GHz. Given an atmospheric profile of temperature, water vapor, and, optionally, cloud liquid water content, and together with a viewing geometry, RTTOV-gb computes downwelling radiances and brightness temperatures leaving the bottom of the atmosphere in each of the channels of the sensor being simulated. In addition, it provides the sensitivity of observations to the atmospheric thermodynamical state, i.e., the Jacobians. Therefore, RTTOV-gb represents the forward model needed to assimilate ground-based MWR data into numerical weather prediction models, which is currently pursued internationally by several weather services. RTTOV-gb is fully described in a previous paper (De Angelis et al., 2016), while several updates are described here. In particular, two new MWR types and a new parameterization for the atmospheric absorption model have been introduced since the first paper. In addition, estimates of the uncertainty associated with the absorption model and with the fast parameterization are given here. Brightness temperatures (TB) computed with RTTOV-gb v1.0 from radiosonde profiles have been compared with ground-based MWR observations in six channels (23.8, 31.4, 72.5, 82.5, 90.0, and 150.0 GHz). The comparison shows statistics within the expected accuracy. RTTOV-gb is now available to licensed users free of charge from the Numerical Weather Prediction Satellite Application Facility (NWP SAF) website, after registration. Coefficients for four MWR instrument types and two absorption model parameterizations are also freely available from the RTTOV-gb support website.

Publisher

Copernicus GmbH

Reference31 articles.

1. Atmospheric Radiation Measurement (ARM): user facility 2006, updated daily, Microwave Radiometer – High Frequency (MWRHFCAL150), 2012-01-01 to 2012-02-29, Southern Great Plains (SGP) Central Facility, Lamont, OK (C1), compiled by: Cadeddu, M. and Ghate, V., ARM Data Center, https://doi.org/10.5439/1150245, 2018a.

2. Atmospheric Radiation Measurement (ARM): user facility 1994, updated daily, Balloon-borne sounding system (SONDEWNPN), 2012-01-01 to 2012-02-29, Southern Great Plains (SGP) Central Facility, Lamont, OK (C1), compiled by: Coulter, R., Prell, J., Ritsche, M., and Holdridge, D., ARM Data Center, https://doi.org/10.5439/1150245, 2018b.

3. Cadeddu, M. P., Liljegren, J. C., and Turner, D. D.: The Atmospheric radiation measurement (ARM) program network of microwave radiometers: instrumentation, data, and retrievals, Atmos. Meas. Tech., 6, 2359–2372, https://doi.org/10.5194/amt-6-2359-2013, 2013.

4. Cimini, D.: RTTOV-gb, available at: http://cetemps.aquila.infn.it/rttovgb/rttovgb.html, last access: 29 April 2019.

5. Cimini, D., Westwater, E. R., Gasiewski, A. J., Klein, M., Leusky, V., and Liljegren, J.: Ground-based millimeter- and submillimiter-wave observations of low vapor and liquid water contents, IEEE T. Geosci. Remote, 45, 2169–2180, https://doi.org/10.1109/TGRS.2007.897450, 2007.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3