SNICAR-ADv3: a community tool for modeling spectral snow albedo
-
Published:2021-12-21
Issue:12
Volume:14
Page:7673-7704
-
ISSN:1991-9603
-
Container-title:Geoscientific Model Development
-
language:en
-
Short-container-title:Geosci. Model Dev.
Author:
Flanner Mark G.ORCID, Arnheim Julian B., Cook Joseph M., Dang Cheng, He CenlinORCID, Huang XiangleiORCID, Singh DeepakORCID, Skiles S. McKenzieORCID, Whicker Chloe A.ORCID, Zender Charles S.ORCID
Abstract
Abstract. The Snow, Ice, and Aerosol Radiative (SNICAR) model has been used in various capacities over the last 15 years to model the spectral albedo of snow with light-absorbing constituents (LACs). Recent studies have extended the model to include an adding-doubling two-stream solver and representations of non-spherical ice particles; carbon dioxide snow; snow algae; and new types of mineral dust, volcanic ash, and brown carbon. New options also exist for ice refractive indices and solar-zenith-angle-dependent surface spectral irradiances used to derive broadband albedo. The model spectral range was also extended deeper into the ultraviolet for studies of extraterrestrial and high-altitude cryospheric surfaces. Until now, however, these improvements and capabilities have not been merged into a unified code base. Here, we document the formulation and evaluation of the publicly available SNICAR-ADv3 source code, web-based model, and accompanying library of constituent optical properties. The use of non-spherical ice grains, which scatter less strongly into the forward direction, reduces the simulated albedo perturbations from LACs by ∼9 %–31 %, depending on which of the three available non-spherical shapes are applied. The model compares very well against measurements of snow albedo from seven studies, though key properties affecting snow albedo are not fully constrained with measurements, including ice effective grain size of the top sub-millimeter of the snowpack, mixing state of LACs with respect to ice grains, and site-specific LAC optical properties. The new default ice refractive indices produce extremely high pure snow albedo (>0.99) in the blue and ultraviolet part of the spectrum, with such values only measured in Antarctica so far. More work is needed particularly in the representation of snow algae, including experimental verification of how different pigment expressions and algal cell concentrations affect snow albedo. Representations and measurements of the influence of liquid water on spectral snow albedo are also needed.
Funder
Division of Arctic Sciences
Publisher
Copernicus GmbH
Reference161 articles.
1. Andreae, M. O. and Gelencsér, A.: Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols, Atmos. Chem. Phys., 6, 3131–3148, https://doi.org/10.5194/acp-6-3131-2006, 2006. a 2. Aoki, T., Aoki, T., Fukabori, M., and Uchiyama, A.: Numerical simulations of
the atmospheric effects on snow albedo with a multiple scattering radiative
transfer model for the snow–atmosphere system, J. Meteorol. Soc. Jpn., 77,
595–614, 1999. a 3. Aoki, T., Aoki, T., Fukabori, M., Hachikubo, A., Tachibana, Y., and Nishio, F.:
Effects of snow physical parameters on spectral albedo and bidirectional
reflectance of snow surface, J. Geophys. Res., 105, 10219–10236, 2000. a, b, c, d, e, f, g, h, i 4. Aoki, T., Kuchiki, K., Niwano, M., Kodama, Y., Hosaka, M., and Tanaka, T.:
Physically based snow albedo model for calculating broadband albedos and the
solar heating profile in snowpack for general circulation models, J. Geophys. Res., 116, D11114, https://doi.org/10.1029/2010JD015507, 2011. a 5. Bair, E. H., Rittger, K., Skiles, S. M., and Dozier, J.: An Examination of Snow
Albedo Estimates From MODIS and Their Impact on Snow Water Equivalent
Reconstruction, Water Resour. Res., 55, 7826–7842,
https://doi.org/10.1029/2019WR024810, 2019. a
Cited by
56 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|