Spatial filtering in a 6D hybrid-Vlasov scheme to alleviate adaptive mesh refinement artifacts: a case study with Vlasiator (versions 5.0, 5.1, and 5.2.1)
-
Published:2022-10-27
Issue:20
Volume:15
Page:7903-7912
-
ISSN:1991-9603
-
Container-title:Geoscientific Model Development
-
language:en
-
Short-container-title:Geosci. Model Dev.
Author:
Papadakis Konstantinos, Pfau-Kempf YannORCID, Ganse UrsORCID, Battarbee MarkusORCID, Alho MarkkuORCID, Grandin MaximeORCID, Dubart MaximeORCID, Turc LucileORCID, Zhou Hongyang, Horaites Konstantinos, Zaitsev Ivan, Cozzani GiuliaORCID, Bussov Maarja, Gordeev Evgeny, Tesema Fasil, George HarrietORCID, Suni JonasORCID, Tarvus VerttiORCID, Palmroth MinnaORCID
Abstract
Abstract. Numerical simulation models that are used to investigate the near-Earth space plasma environment require sophisticated methods and algorithms as well as high computational power. Vlasiator 5.0 is a hybrid-Vlasov plasma simulation code that is able to perform 6D (3D in ordinary space and 3D in velocity space) simulations using adaptive mesh refinement (AMR). In this work, we describe a side effect of using AMR in Vlasiator 5.0: the heterologous grid approach creates discontinuities due to the different grid resolution levels. These discontinuities cause spurious oscillations in the electromagnetic fields that alter the global results. We present and test a spatial filtering operator for alleviating this artifact without significantly increasing the computational overhead. We demonstrate the operator's use case in large 6D AMR simulations and evaluate its performance with different implementations.
Funder
Academy of Finland H2020 European Research Council
Publisher
Copernicus GmbH
Reference23 articles.
1. Battarbee, M., Hannuksela, O. A., Pfau-Kempf, Y., von Alfthan, S., Ganse, U., Jarvinen, R., Suni, L. J., Alho, M., Turc, L., Honkonen, I., Brito, T., and Grandin, M.: fmihpc/analysator: v0.9 (v0.9), Zenodo [code], https://doi.org/10.5281/zenodo.4462515, 2021. a 2. Birchfield, S.: Image processing and analysis, Cengage Learning,
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781337515627 (last access: March 2022),
oCLC: 1256700118, 2017. a 3. Cook, R. L.: Stochastic sampling in computer graphics, ACM Transactions on
Graphics, 5, 51–72, https://doi.org/10.1145/7529.8927, 1986. a 4. Grandin, M., Battarbee, M., Osmane, A., Ganse, U., Pfau-Kempf, Y., Turc, L., Brito, T., Koskela, T., Dubart, M., and Palmroth, M.: Hybrid-Vlasov modelling of nightside auroral proton precipitation during southward interplanetary magnetic field conditions, Ann. Geophys., 37, 791–806, https://doi.org/10.5194/angeo-37-791-2019, 2019. a 5. Hesse, M., Aunai, N., Birn, J., Cassak, P., Denton, R. E., Drake, J. F.,
Gombosi, T., Hoshino, M., Matthaeus, W., Sibeck, D., and Zenitani, S.: Theory
and Modeling for the Magnetospheric Multiscale Mission, Space Sci.
Rev., 199, 577–630, https://doi.org/10.1007/s11214-014-0078-y, 2014. a
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|