Grid refinement in ICON v2.6.4

Author:

Zängl Günther,Reinert DanielORCID,Prill Florian

Abstract

Abstract. This article describes the implementation of grid refinement in the ICOsahedral Nonhydrostatic (ICON) modeling system. It basically follows the classical two-way nesting approach known from widely used mesoscale models like MM5 or WRF, but it differs in the way feedback from fine grids to coarser grids is applied. Moreover, the ICON implementation supports vertical nesting in the sense that the upper boundary of a nested domain may be lower than that of its parent domain. Compared to the well-established implementations on quadrilateral grids, new methods had to be developed for interpolating the lateral boundary conditions from the parent domain to the child domain(s). These are based on radial basis functions (RBFs) and partly apply direct reconstruction of the prognostic variables at the required grid points, whereas gradient-based extrapolation from parent to child grid points is used in other cases. The runtime flow control is written such that limited-area domains can be processed identically to nested domains except for the lateral boundary data supply. To demonstrate the functionality and quality of the grid nesting in ICON, idealized tests based on the Jablonowski–Williamson test case (Jablonowski and Williamson, 2006) and the Schär mountain wave test case (Schär et al., 2002) are presented. The results show that the numerical disturbances induced at the nest boundaries are small enough to be negligible for real applications. This is confirmed by experiments closely following the configuration used for operational numerical weather prediction at DWD, which demonstrate that a regional refinement over Europe has a significant positive impact on the forecast quality in the Northern Hemisphere.

Publisher

Copernicus GmbH

Subject

General Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Establishing a limited‐area model based on a global model: A consistency study;Quarterly Journal of the Royal Meteorological Society;2024-08-03

2. Lagrangian transport based on the winds of the icosahedral nonhydrostatic model (ICON);Meteorologische Zeitschrift;2024-07-29

3. The impact of mesh size, turbulence parameterization, and land‐surface‐exchange scheme on simulations of the mountain boundary layer in the hectometric range;Quarterly Journal of the Royal Meteorological Society;2024-07-14

4. Multiresolution approximation for shallow water equations using summation-by-parts finite differences;Russian Journal of Numerical Analysis and Mathematical Modelling;2023-12-01

5. Big Data Assimilation: Real-time 30-second-refresh Heavy Rain Forecast Using Fugaku During Tokyo Olympics and Paralympics;Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis;2023-11-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3