Estimating time delays for constructing dynamical networks

Author:

Martin E. A.,Davidsen J.

Abstract

Abstract. Dynamical networks – networks inferred from multivariate time series – have been widely applied to climate data and beyond, resulting in new insights into the underlying dynamics. However, these inferred networks can suffer from biases that need to be accounted for to properly interpret the results. Here, we report on a previously unrecognized bias in the estimate of time delays between nodes in dynamical networks inferred from cross-correlations, a method often used. This bias results in the maximum correlation occurring disproportionately often at large time lags. This is of particular concern in dynamical networks where the large number of possible links necessitates finding the correct time lag in an automated way. We show that this bias can arise due to the similarity of the estimator to a random walk, and are able to map them to each other explicitly for some cases. For the random walk there is an analytical solution for the bias that is closely related to the famous Lévy arcsine distribution, which provides an upper bound in many other cases. Finally, we show that estimating the cross-correlation in frequency space effectively eliminates this bias. Reanalysing large lag links (from a climate network) with this method results in a distribution peaked near zero instead, as well as additional peaks at the originally assigned lag. Links that are reassigned smaller time lags tend to have a smaller distance between them, which indicates that the new time delays are physically reasonable.

Publisher

Copernicus GmbH

Subject

General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3