Estimation of permeability of a sandstone reservoir by a fractal and Monte Carlo simulation approach: a case study

Author:

Vadapalli U.,Srivastava R. P.,Vedanti N.,Dimri V. P.

Abstract

Abstract. Permeability of a hydrocarbon reservoir is usually estimated from core samples in the laboratory or from well test data provided by the industry. However, such data is very sparse and as such it takes longer to generate that. Thus, estimation of permeability directly from available porosity logs could be an alternative and far easier approach. In this paper, a method of permeability estimation is proposed for a sandstone reservoir, which considers fractal behavior of pore size distribution and tortuosity of capillary pathways to perform Monte Carlo simulations. In this method, we consider a reservoir to be a mono-dispersed medium to avoid effects of micro-porosity. The method is applied to porosity logs obtained from Ankleshwar oil field, situated in the Cambay basin, India, to calculate permeability distribution in a well. Computed permeability values are in good agreement with the observed permeability obtained from well test data. We also studied variation of permeability with different parameters such as tortuosity fractal dimension (Dt), grain size (r) and minimum particle size (d0), and found that permeability is highly dependent upon the grain size. This method will be extremely useful for permeability estimation, if the average grain size of the reservoir rock is known.

Publisher

Copernicus GmbH

Subject

General Medicine

Reference48 articles.

1. Adler, P. M. and Thovert, J. F.: Fractal porous media, Transport in porous media, 13, 41–78, 1993.

2. Carman, P. C.: Flow of gases through porous media, Butterworth Scientific Publications, 1956.

3. Clauser, C.: Permeability of crystalline rocks, EOS, 73, 233–238, 1992.

4. Darcy, H.: Les Fontaines Publiques de la Ville de Dijon, Dalmont, Paris, 1856.

5. Denn, M. M.: Process Fluid Mechanics, Prentice-Hall, Englewood Cliff, NJ, 35–66 pp., 1980.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3