Differences in aerosol and cloud properties along the central California coast when winds change from northerly to southerly
-
Published:2024-08-22
Issue:16
Volume:24
Page:9059-9083
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Zeider KiraORCID, Betito Grace, Bucholtz Anthony, Xian PengORCID, Walker Annette, Sorooshian ArminORCID
Abstract
Abstract. Wind reversals resulting in southerly flow along the California coast are not well understood in terms of how aerosol and cloud characteristics change. This gap is addressed using airborne field measurements enhanced with data from spaceborne remote sensing (Moderate Resolution Imaging Spectroradiometer), surface stations (Interagency Monitoring of Protected Visual Environments), and models (Navy Aerosol Analysis and Prediction System and Coupled Ocean–Atmosphere Mesoscale Prediction System), with a focus on submicron and supermicron aerosol, as well as cloud microphysical variables: cloud droplet number concentration (Nd), cloud optical thickness (COT), and cloud droplet effective radius (re). Southerly flow coincided with higher values of submicron aerosol concentration (Na) and mass concentrations of species representative of fine-aerosol pollution (NO3- and nss-SO42-) as well as shipping and continental emissions (V, oxalate, NH4+, Ni, OC, and EC). Supermicron Na did not change; however, heightened levels of acidic species in southerly flow coincided with reduced Cl− : Na+, suggestive of Cl− depletion in salt particles. Clouds responded correspondingly in southerly flow, with more acidic cloud water and higher levels of similar species as in the aerosol phase (e.g., NO3-, nss-SO42-, NH4+, V), along with elevated values of Nd and COT and reduced re during campaigns with similar cloud liquid water paths. Case study flights help to visualize offshore pollution gradients and highlight the sensitivity of the results to the presence of widespread smoke coverage including how associated plumes have enhanced supermicron Na. These results have implications for aerosol–cloud interactions during wind reversals and have relevance for weather, public welfare, and aviation.
Funder
Office of Naval Research
Publisher
Copernicus GmbH
Reference87 articles.
1. AzadiAghdam, M., Braun, R. A., Edwards, E.-L., Bañaga, P. A., Cruz, M. T., Betito, G., Cambaliza, M. O., Dadashazar, H., Lorenzo, G. R., Ma, L., MacDonald, A. B., Nguyen, P., Simpas, J. B., Stahl, C., and Sorooshian, A.: On the nature of sea salt aerosol at a coastal megacity: Insights from Manila, Philippines in Southeast Asia, Atmos. Environ., 216, 116922, https://doi.org/10.1016/j.atmosenv.2019.116922, 2019. 2. Blanchard, D. C. and Woodcock, A. H.: Bubble formation and modification in the sea and its meteorological significance, Tellus, 9, 145–158, https://doi.org/10.3402/tellusa.v9i2.9094, 1957. 3. Bond, N. A., Mass, C. F., and Overland, J. E.: Coastally trapped wind reversals along the United States west coast during the warm season. Part I: Climatology and temporal evolution, Mon. Weather Rev., 124, 430–445, https://doi.org/10.1175/1520-0493(1996)124<0430:CTWRAT>2.0.CO;2, 1996. 4. Braun, R. A., Dadashazar, H., MacDonald, A. B., Aldhaif, A. M., Maudlin, L. C., Crosbie, E., Aghdam, M. A., Hossein Mardi, A., and Sorooshian, A.: Impact of wildfire emissions on chloride and bromide depletion in marine aerosol particles, Environ. Sci. Technol., 51, 9013–9021, https://doi.org/10.1021/acs.est.7b02039, 2017. 5. Cahill, T. A., Ashbaugh, L. L., Eldred, R. A., Feeney, P. J., Kusko, B. H., and Flocchini, R. G.: Comparisons between size-segregated resuspended soil samples and ambient aerosols in the western United States, in: Atmospheric Aerosol, ACS Symposium Series, 167, American Chemical Society, 269–285, https://doi.org/10.1021/bk-1981-0167.ch015, 1981.
|
|