Drivers of droplet formation in east Mediterranean orographic clouds

Author:

Foskinis Romanos,Motos Ghislain,Gini Maria I.,Zografou OlgaORCID,Gao KunfengORCID,Vratolis Stergios,Granakis Konstantinos,Vakkari Ville,Violaki Kalliopi,Aktypis AndreasORCID,Kaltsonoudis ChristosORCID,Shi ZongboORCID,Komppula Mika,Pandis Spyros N.,Eleftheriadis KonstantinosORCID,Papayannis AlexandrosORCID,Nenes AthanasiosORCID

Abstract

Abstract. The purpose of this study is to understand the drivers of cloud droplet formation in orographic clouds. We used a combination of modeling, in situ, and remote sensing measurements at the high-altitude Helmos Hellenic Atmospheric Aerosol and Climate Change ((HAC)2) station, which is located at the top of Mt. Helmos (1314 m above sea level), Greece, during the Cloud–AerosoL InteractionS in the Helmos Background TropOsphere (CALISHTO) campaign in fall 2021 (https://calishto.panacea-ri.gr/, last access: 1 August 2024) to examine the origins of the aerosols (i.e., local aerosol from the planetary boundary layer (PBL) or long-range-transported aerosol from the free-tropospheric layer (FTL) contributing to the cloud condensation nuclei (CCN)), their characteristics (hygroscopicity, size distribution, and mixing state), and the vertical velocity distributions and resulting supersaturations. We found that the characteristics of the PBL aerosol were considerably different from FTL aerosol and use the aerosol particle number and equivalent mass concentration of the black carbon (eBC) in order to determine when (HAC)2 was within the FTL or PBL based on time series of the height of the PBL. During the (HAC)2 cloud events we sample a mixture of interstitial aerosol and droplet residues, which we characterize using a new approach that utilizes the in situ droplet measurements to determine time periods when the aerosol sample is purely interstitial. From the dataset we determine the properties (size distribution and hygroscopicity) of the pre-cloud, activated, and interstitial aerosol. The hygroscopicity of activated aerosol is found to be higher than that of the interstitial or pre-cloud aerosol. A series of closure studies with the droplet parameterization shows that cloud droplet concentration (Nd) and supersaturation can be predicted to within 25 % of observations when the aerosol size distributions correspond to pre-cloud conditions. The analysis of the characteristic supersaturation of each aerosol population indicates that droplet formation in clouds is aerosol-limited when formed in FTL air masses – hence droplet formation is driven by aerosol variations, while clouds formed in the PBL tend to be velocity-limited and droplet variations are driven by fluctuations in vertical velocity. Given that the cloud dynamics do not vary significantly between air masses, the variation in aerosol concentration and type is mostly responsible for these shifts in cloud microphysical state and sensitivity to aerosol. With these insights, the remote sensing of cloud droplets in such clouds can be used to infer either CCN spectra (when in the FTL) or vertical velocity (when in the PBL). In conclusion, we show that a coordinated measurement of aerosol and cloud properties, together with the novel analysis approaches presented here, allows for the determination of the drivers of droplet formation in orographic clouds and their sensitivity to aerosol and vertical velocity variations.

Funder

H2020 European Research Council

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Hellenic Ministry of Rural Development and Food

National Technical University of Athens

HORIZON EUROPE Framework Programme

Publisher

Copernicus GmbH

Reference77 articles.

1. Asmi, E., Freney, E., Hervo, M., Picard, D., Rose, C., Colomb, A., and Sellegri, K.: Aerosol cloud activation in summer and winter at puy-de-Dôme high altitude site in France, Atmos. Chem. Phys., 12, 11589–11607, https://doi.org/10.5194/acp-12-11589-2012, 2012.

2. Barahona, D., West, R. E. L., Stier, P., Romakkaniemi, S., Kokkola, H., and Nenes, A.: Comprehensively accounting for the effect of giant CCN in cloud activation parameterizations, Atmos. Chem. Phys., 10, 2467–2473, https://doi.org/10.5194/acp-10-2467-2010, 2010.

3. Barlow, J. F., Dunbar, T. M., Nemitz, E. G., Wood, C. R., Gallagher, M. W., Davies, F., O'Connor, E., and Harrison, R. M.: Boundary layer dynamics over London, UK, as observed using Doppler lidar during REPARTEE-II, Atmos. Chem. Phys., 11, 2111–2125, https://doi.org/10.5194/acp-11-2111-2011, 2011.

4. Bougiatioti, A., Bezantakos, S., Stavroulas, I., Kalivitis, N., Kokkalis, P., Biskos, G., Mihalopoulos, N., Papayannis, A., and Nenes, A.: Biomass-burning impact on CCN number, hygroscopicity and cloud formation during summertime in the eastern Mediterranean, Atmos. Chem. Phys., 16, 7389–7409, https://doi.org/10.5194/acp-16-7389-2016, 2016.

5. Braun, R. A., Dadashazar, H., MacDonald, A. B., Crosbie, E., Jonsson, H. H., Woods, R. K., Flagan, R. C., Seinfeld, J. H., and Sorooshian, A.: Cloud Adiabaticity and Its Relationship to Marine Stratocumulus Characteristics Over the Northeast Pacific Ocean, J. Geophys. Res.-Atmos., 123, 13790–13806, https://doi.org/10.1029/2018JD029287, 2018.​​​​​​​

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3