Remote Quantification of the Trophic Status of Chinese Lakes

Author:

Li SijiaORCID,Xu Shiqi,Song KaishanORCID,Kutser Tiit,Wen Zhidan,Liu Ge,Shang Yingxin,Lyu Lili,Tao Hui,Wang Xiang,Zhang Lele,Chen Fangfang

Abstract

Abstract. Assessing eutrophication in lakes is of key importance, as this parameter constitutes a major aquatic ecosystem integrity indicator. The trophic state index (TSI), which is widely used to quantify eutrophication, is a universal paradigm in scientific literature. In this study, a methodological framework is proposed for quantifying and mapping TSI using the Sentinel Multispectral Imager sensor and fieldwork samples. The first step of the methodology involves the implementation of stepwise multiple regression analysis of the available TSI dataset to find some band ratios, such as blue/red, green/red, and red/red, which are sensitive to lake TSI. Trained with in situ measured TSI and match-up Sentinel images, we established the XGBoost of machine learning approaches to estimate TSI, with good agreement (R2 = 0.87, slope = 0.85) and fewer errors (MAE = 3.15 and RMSE = 4.11). Additionally, we discussed the transferability and applications of XGBoost in three lake classifications: water quality, absorption contribution, and reflectance spectra types. We selected the XGBoost to map TSI in 2019–2020 with good quality Sentinel-2 Level-1C images embedded in ESA to examine the spatiotemporal variations of the lake trophic state. In a large-scale observation, 10-m TSI products from investigated 555 lakes in China facing eutrophication and unbalanced spatial patterns associated with lake basin characteristics, climate, and anthropogenic activities. The methodological framework proposed herein could serve as a useful resource toward a continuous, long-term, and large-scale monitoring of lake aquatic ecosystems, supporting sustainable water resource management.

Funder

China Postdoctoral Science Foundation

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3