ModE-Sim – a medium-sized atmospheric general circulation model (AGCM) ensemble to study climate variability during the modern era (1420 to 2009)
-
Published:2023-08-28
Issue:16
Volume:16
Page:4853-4866
-
ISSN:1991-9603
-
Container-title:Geoscientific Model Development
-
language:en
-
Short-container-title:Geosci. Model Dev.
Author:
Hand RalfORCID, Samakinwa EricORCID, Lipfert LauraORCID, Brönnimann Stefan
Abstract
Abstract. We introduce ModE-Sim (Modern Era SIMulations), a medium-sized ensemble of simulations with the atmospheric general circulation model ECHAM6 in its LR (low-resolution) version (T63; approx. 1.8∘ horizontal grid width with 47 vertical levels). At the lower boundary we use prescribed sea surface temperatures and sea ice that reflect observed values while accounting for uncertainties in these. Furthermore we use radiative forcings that also reflect observed values while accounting for uncertainties in the timing and strength of volcanic eruptions. The simulations cover the period from 1420 to 2009. With 60 ensemble members between 1420 and 1850 and 36 ensemble members from 1850 to 2009, ModE-Sim consists of 31 620 simulated years in total.
ModE-Sim is suitable for many applications as its various subsets can be used as initial-condition and boundary-condition ensembles to study climate variability. The main intention of this paper is to give a comprehensive description of the experimental setup of ModE-Sim and to provide an evaluation, mainly focusing on the two key variables, 2 m temperature and precipitation. We demonstrate ModE-Sim's ability to represent their mean state, to produce a reasonable response to external forcings, and to sample internal variability. Through the example of heat waves, we show that the ensemble is even capable of capturing certain types of extreme events.
Funder
H2020 European Research Council
Publisher
Copernicus GmbH
Reference46 articles.
1. Becker, A., Finger, P., Meyer-Christoffer, A., Rudolf, B., Schamm, K., Schneider, U., and Ziese, M.: A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901–present, Earth Syst. Sci. Data, 5, 71–99, https://doi.org/10.5194/essd-5-71-2013, 2013. a 2. Bhend, J., Franke, J., Folini, D., Wild, M., and Brönnimann, S.: An ensemble-based approach to climate reconstructions, Clim. Past, 8, 963–976, https://doi.org/10.5194/cp-8-963-2012, 2012. a 3. Bittner, M., Timmreck, C., Schmidt, H., Toohey, M., and Krüger, K.: The impact
of wave-mean flow interaction on the Northern Hemisphere polar vortex
after tropical volcanic eruptions, J. Geophys. Res.-Atmos., 121, 5281–5297,
https://doi.org/10.1002/2015JD024603, 2016. a 4. Brönnimann, S.: Impact of El Niño–Southern Oscillation on
European climate, Rev. Geophys., 45, RG3003, https://doi.org/10.1029/2006RG000199, 2007. a 5. Christiansen, B.: Volcanic Eruptions, Large-Scale Modes in the
Northern Hemisphere, and the El Niño–Southern Oscillation, J.
Climate, 21, 910–922, https://doi.org/10.1175/2007JCLI1657.1, 2008. a
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|