1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,
G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp,
A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M.,
Levenberg, J., Mane, D., Monga, R., Moore, S., Murray, D., Olah, C.,
Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P.,
Vanhoucke, V., Vasudevan, V., Viegas, F., Vinyals, O., Warden, P.,
Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X.: TensorFlow:
Large-Scale Machine Learning on Heterogeneous Distributed
Systems, arXiv [preprint], https://doi.org/10.48550/arXiv.1603.04467, 2016. a
2. Bahdanau, D., Cho, K., and Bengio, Y.: Neural Machine Translation by Jointly
Learning to Align and Translate, arXiv [preprint], https://doi.org/10.48550/ARXIV.1409.0473, 2014. a
3. Bishop, C. M.: Pattern recognition and machine learning, Information science
and statistics, Springer, New York, 738 pp., ISBN 978-0-387-31073-2, 2006. a, b
4. Breiman, L.: Random forests, Mach. Learn., 45, 5–32,
https://doi.org/10.1023/A:1010933404324, 2001. a
5. Calonne, N., Richter, B., Löwe, H., Cetti, C., ter Schure, J., Van Herwijnen, A., Fierz, C., Jaggi, M., and Schneebeli, M.: The RHOSSA campaign: multi-resolution monitoring of the seasonal evolution of the structure and mechanical stability of an alpine snowpack, The Cryosphere, 14, 1829–1848, https://doi.org/10.5194/tc-14-1829-2020, 2020. a