CHEEREIO 1.0: a versatile and user-friendly ensemble-based chemical data assimilation and emissions inversion platform for the GEOS-Chem chemical transport model
-
Published:2023-08-24
Issue:16
Volume:16
Page:4793-4810
-
ISSN:1991-9603
-
Container-title:Geoscientific Model Development
-
language:en
-
Short-container-title:Geosci. Model Dev.
Author:
Pendergrass Drew C.ORCID, Jacob Daniel J., Nesser HannahORCID, Varon Daniel J.ORCID, Sulprizio Melissa, Miyazaki KazuyukiORCID, Bowman Kevin W.ORCID
Abstract
Abstract. We present a versatile, powerful, and user-friendly chemical data assimilation toolkit for simultaneously optimizing emissions and concentrations of
chemical species based on atmospheric observations from satellites or suborbital platforms. The CHemistry and Emissions REanalysis Interface with
Observations (CHEEREIO) exploits the GEOS-Chem chemical transport model and a localized ensemble transform Kalman filter algorithm (LETKF) to
determine the Bayesian optimal (posterior) emissions and/or concentrations of a set of species based on observations and prior information using an
easy-to-modify configuration file with minimal changes to the GEOS-Chem or LETKF code base. The LETKF algorithm readily allows for nonlinear
chemistry and produces flow-dependent posterior error covariances from the ensemble simulation spread. The object-oriented Python-based design of
CHEEREIO allows users to easily add new observation operators such as for satellites. CHEEREIO takes advantage of the Harmonized Emissions Component (HEMCO) modular structure of
input data management in GEOS-Chem to update emissions from the assimilation process independently from the GEOS-Chem code. It can seamlessly
support GEOS-Chem version updates and is adaptable to other chemical transport models with similar modular input data structure. A post-processing
suite combines ensemble output into consolidated NetCDF files and supports a wide variety of diagnostic data and visualizations. We demonstrate
CHEEREIO's capabilities with an out-of-the-box application, assimilating global methane emissions and concentrations at weekly temporal resolution
and 2∘ × 2.5∘ spatial resolution for 2019 using TROPOspheric Monitoring Instrument (TROPOMI) satellite observations. CHEEREIO achieves a 50-fold improvement in
computational performance compared to the equivalent analytical inversion of TROPOMI observations.
Funder
National Aeronautics and Space Administration National Science Foundation
Publisher
Copernicus GmbH
Reference61 articles.
1. Asch, M., Bocquet, M., and Nodet, M.:
Data Assimilation, in: Fundamentals of Algorithms, Society for Industrial and Applied Mathematics, https://doi.org/10.1137/1.9781611974546, 2016. 2. Bisht, J. S. H., Patra, P. K., Takigawa, M., Sekiya, T., Kanaya, Y., Saitoh, N., and Miyazaki, K.: Estimation of CH4 emission based on an advanced 4D-LETKF assimilation system, Geosci. Model Dev., 16, 1823–1838, https://doi.org/10.5194/gmd-16-1823-2023, 2023. 3. Bocquet, M., Elbern, H., Eskes, H., Hirtl, M., Žabkar, R., Carmichael, G. R., Flemming, J., Inness, A., Pagowski, M., Pérez Camaño, J. L., Saide, P. E., San Jose, R., Sofiev, M., Vira, J., Baklanov, A., Carnevale, C., Grell, G., and Seigneur, C.:
Data assimilation in atmospheric chemistry models: current status and future prospects for coupled chemistry meteorology models, Atmos. Chem. Phys., 15, 5325–5358, https://doi.org/10.5194/acp-15-5325-2015, 2015. 4. Brasseur, G. and Jacob, D.:
Modeling of Atmospheric Chemistry, Cambridge University Press, https://doi.org/10.1017/9781316544754, 2017. 5. Bruhwiler, L., Dlugokencky, E., Masarie, K., Ishizawa, M., Andrews, A., Miller, J., Sweeney, C., Tans, P., and Worthy, D.:
CarbonTracker-CH4: an assimilation system for estimating emissions of atmospheric methane, Atmos. Chem. Phys., 14, 8269–8293, https://doi.org/10.5194/acp-14-8269-2014, 2014.
|
|