BrGDGT-based seasonal paleotemperature reconstruction for the last 15 000 years from a shallow lake on the eastern Tibetan Plateau

Author:

Hou Xiaohuan,Wang Nannan,Sun ZheORCID,Yuan Kan,Cao XianyongORCID,Hou JuzhiORCID

Abstract

Abstract. Understanding Holocene temperature changes is vital for resolving discrepancies between proxy reconstructions and climate models. The intricate temperature variations across the Tibetan Plateau (TP) add complexity to studying continental climate change during this period. Discrepancies between model-based and proxy-based reconstructions might stem from seasonal biases and environmental uncertainties in the proxies. Employing multiple proxies from a single sediment core for quantitative temperature reconstructions offers an effective method for cross-validation in terrestrial environments. Here, we present an ice-free-season temperature record for the past 15 kyr from a shallow, freshwater lake on the eastern TP, based on brGDGTs (branched glycerol dialkyl glycerol tetraethers). This record shows that the Holocene Thermal Maximum lags the pollen-based July temperature recorded in the same sediment core. We conclude that the mismatch between the brGDGT-based and pollen-based temperatures is primarily the result of seasonal variations in solar irradiance. The overall pattern of temperature changes is supported by other summer temperature records, and the Younger Dryas cold event and the Bølling–Allerød warm period are also detected. A generally warm period occurred during 8–3.5 ka, followed by a cooling trend in the late Holocene. Our findings have implications for understanding the seasonal signal of brGDGTs in shallow lakes and provide critical data for confirming the occurrence of seasonal biases in different proxies from high-elevation lakes. To further investigate the significance of the brGDGTs and temperature patterns on the TP, we examined existing brGDGT-based Holocene temperature records, which interpret these compounds as indicators of mean annual or growing season temperatures. The existing and available temperature records show complicated patterns of variation, some with general warming trends throughout the Holocene, some with cooling trends, and some with a warm middle Holocene. We analyzed the possible reasons for the diverse brGDGTs records on the TP and emphasize the importance of considering lake conditions and modern investigations of brGDGTs in lacustrine systems when using brGDGTs to reconstruct paleoenvironmental conditions.

Funder

National Natural Science Foundation of China

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3