The response of the Peruvian Upwelling Ecosystem to centennial-scale global change during the last two millennia

Author:

Salvatteci R.ORCID,Gutiérrez D.,Field D.,Sifeddine A.,Ortlieb L.,Bouloubassi I.,Boussafir M.,Boucher H.,Cetin F.

Abstract

Abstract. The Tropical Pacific ocean-atmosphere system influences global climate on interannual, decadal, as well as at longer timescales. Given the uncertainties in the response of the Tropical Pacific to the ongoing greenhouse effect, it is important to assess the natural range of the Tropical Pacific climate variability in response to global natural changes, and to understand the underlying mechanisms. The Peruvian Upwelling Ecosystem (PUE) represents an ideal area to reconstruct past changes in ocean-atmosphere systems because productivity and subsurface oxygenation are strongly linked to changes in the strength of the Walker circulation. Throughout the last 2000 yr, warmer (the Roman Warm Period [RWP], the Medieval Climate Anomaly [MCA] and the Current Warm Period [CWP]), and colder (the Dark Ages Cold Period [DACP] and Little Ice Age [LIA]) intervals occurred with considerable changes around the globe. In order to reconstruct the PUE response to these climatic periods and reveal the underlying mechanisms, we use a multi-proxy approach including organic and inorganic proxies in finely laminated sediments retrieved off Pisco (~ 14° S), Peru. Our results indicate that the PUE exhibited a La Niña-like mean state during the warm periods, characterized by an intense OMZ and high marine productivity. During cold periods the PUE exhibited an El Niño-like mean state, characterized by a weak OMZ and low marine productivity. Comparing our results with other relevant paleoclimatic reconstructions revealed that changes in the strength of the Walker circulation and the expansion/contraction of the South Pacific Sub-tropical High controlled productivity and subsurface oxygenation in the PUE during the last two millennia. This indicate that large scale circulation changes are the driving forces in maintaining productivity and subsurface oxygenation off Peru at centennial time scales during the past two millennia.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3