Positive and negative influences of typhoons on tropospheric ozone over southern China

Author:

Chen Zhixiong,Liu JaneORCID,Cheng Xugeng,Yang Mengmiao,Wang Hong

Abstract

Abstract. Based on an ensemble of 17 typhoons that made landfall between 2014 and 2018, we investigate the positive and negative influences of typhoons on tropospheric ozone over southern China. With respect to the proximity of typhoon centres and the typhoon developmental stages, we find that surface ozone is enhanced when typhoons are 400–1500 km away during the initial stages of development (e.g. from 1 d before to 1 d after typhoon genesis). The positive ozone anomalies reach 10–20 ppbv above the background ozone level on average. The maximum enhancement of surface ozone appears at a radial distance of 1100–1300 km from the typhoon centre during these initial stages. As the typhoons approach southern China, the influences of these systems switch to reducing ozone and, hence, lead to negative ozone anomalies of 6–9 ppbv. Exploring the linkages between ozone variations and typhoon-induced meteorological evolution, we find that increasing temperature and weak winds in the atmospheric boundary layer (ABL) and dominating downward motions promote ozone production and accumulation over the outskirts of typhoons during typhoon initial stages, whereas deteriorating weather, accompanied by dropping temperature, wind gales and convective activity, reduces the production and accumulation of surface ozone when typhoons are making landfall. We further examine the impacts of typhoons on tropospheric ozone profiles vertically, especially the influences of typhoon-induced stratospheric intrusions on lower troposphere and surface ozone. Based on temporally dense ozone profile observations, we find two high-ozone regions, located in the ABL and the middle to upper troposphere respectively, during different typhoon stages. On average, the high-ozone region in the ABL has a maximum ozone enhancement of 10–12 ppbv at 1–1.5 km altitude during the initial typhoon stages. In the high-ozone region in the middle to upper troposphere, ozone enhancement persists over a longer period with a maximum ozone enhancement of ∼ 10 ppbv at 7–8 km altitude shortly after typhoon genesis; this value increases to ∼ 30 ppbv near 12 km altitude when typhoons reach their maximum intensity. When typhoons make landfall, negative ozone anomalies appear and extend upward with a maximum ozone reduction of 14–18 ppbv at 5 km altitude and 20–25 ppbv at 11 km altitude. Although the overall tropospheric ozone is usually reduced during typhoon landfall, we find that five of eight typhoon samples induced ozone-rich air with a stratospheric origin above 4 km altitude; moreover, in three typhoon cases, the ozone-rich air intrusions can sink to the ABL. This suggests that the typhoon-induced stratospheric intrusions play an important role in surface ozone enhancement.

Funder

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3