Insight into PM<sub>2.5</sub> sources by applying positive matrix factorization (PMF) at urban and rural sites of Beijing

Author:

Srivastava DeepchandraORCID,Xu JingshaORCID,Vu Tuan V.ORCID,Liu Di,Li LinjieORCID,Fu PingqingORCID,Hou Siqi,Moreno Palmerola Natalia,Shi ZongboORCID,Harrison Roy M.ORCID

Abstract

Abstract. This study presents the source apportionment of PM2.5 performed by positive matrix factorization (PMF) on data presented here which were collected at urban (Institute of Atmospheric Physics – IAP) and rural (Pinggu – PG) sites in Beijing as part of the Atmospheric Pollution and Human Health in a Chinese megacity (APHH-Beijing) field campaigns. The campaigns were carried out from 9 November to 11 December 2016 and from 22 May to 24 June 2017. The PMF analysis included both organic and inorganic species, and a seven-factor output provided the most reasonable solution for the PM2.5 source apportionment. These factors are interpreted as traffic emissions, biomass burning, road dust, soil dust, coal combustion, oil combustion, and secondary inorganics. Major contributors to PM2.5 mass were secondary inorganics (IAP: 22 %; PG: 24 %), biomass burning (IAP: 36 %; PG: 30 %), and coal combustion (IAP: 20 %; PG: 21 %) sources during the winter period at both sites. Secondary inorganics (48 %), road dust (20 %), and coal combustion (17 %) showed the highest contribution during summer at PG, while PM2.5 particles were mainly composed of soil dust (35 %) and secondary inorganics (40 %) at IAP. Despite this, factors that were resolved based on metal signatures were not fully resolved and indicate a mixing of two or more sources. PMF results were also compared with sources resolved from another receptor model (i.e. chemical mass balance – CMB) and PMF performed on other measurements (i.e. online and offline aerosol mass spectrometry, AMS) and showed good agreement for some but not all sources. The biomass burning factor in PMF may contain aged aerosols as a good correlation was observed between biomass burning and oxygenated fractions (r2= 0.6–0.7) from AMS. The PMF failed to resolve some sources identified by the CMB and AMS and appears to overestimate the dust sources. A comparison with earlier PMF source apportionment studies from the Beijing area highlights the very divergent findings from application of this method.

Funder

Natural Environment Research Council

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3