Comprehensive evaluations of diurnal NO<sub>2</sub> measurements during DISCOVER-AQ 2011: effects of resolution-dependent representation of NO<sub><i>x</i></sub> emissions
-
Published:2021-07-23
Issue:14
Volume:21
Page:11133-11160
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Li JianfengORCID, Wang YuhangORCID, Zhang RuixiongORCID, Smeltzer Charles, Weinheimer Andrew, Herman JayORCID, Boersma K. FolkertORCID, Celarier Edward A.ORCID, Long Russell W., Szykman James J., Delgado RubenORCID, Thompson Anne M.ORCID, Knepp Travis N.ORCID, Lamsal Lok N., Janz Scott J., Kowalewski Matthew G., Liu Xiong, Nowlan Caroline R.ORCID
Abstract
Abstract. Nitrogen oxides (NOx = NO + NO2) play a crucial role in the formation of ozone and secondary inorganic
and organic aerosols, thus affecting human health, global radiation budget, and climate. The diurnal and spatial variations in NO2 are
functions of emissions, advection, deposition, vertical mixing, and chemistry. Their observations, therefore, provide useful constraints in our
understanding of these factors. We employ a Regional chEmical and trAnsport model (REAM) to analyze the observed temporal (diurnal cycles) and
spatial distributions of NO2 concentrations and tropospheric vertical column densities (TVCDs) using aircraft in situ measurements and surface EPA Air Quality System (AQS) observations as well as the measurements of TVCDs by satellite instruments (OMI: the Ozone Monitoring Instrument; GOME-2A: Global Ozone Monitoring Experiment – 2A), ground-based Pandora, and the Airborne Compact Atmospheric Mapper (ACAM) instrument in July 2011 during the DISCOVER-AQ campaign over the Baltimore–Washington region. The model simulations at 36 and 4 km resolutions are in reasonably good agreement with the regional mean temporospatial NO2 observations in the daytime. However, we find significant overestimations (underestimations) of model-simulated NO2 (O3) surface concentrations during nighttime, which can be mitigated by enhancing nocturnal vertical mixing in the model. Another discrepancy is that Pandora-measured NO2 TVCDs show much less variation in the late afternoon than simulated in the model. The higher-resolution 4 km simulations tend to show larger biases compared to the observations due largely to the larger spatial variations in NOx emissions in the model when the model spatial resolution is increased from 36 to 4 km. OMI, GOME-2A, and the high-resolution aircraft ACAM observations show a more dispersed distribution of NO2 vertical column densities (VCDs) and lower VCDs in urban regions than corresponding 36 and 4 km model simulations, likely reflecting the spatial distribution bias of NOx emissions in the National Emissions Inventory (NEI) 2011.
Funder
National Aeronautics and Space Administration
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference118 articles.
1. Anderson, D. C., Loughner, C. P., Diskin, G., Weinheimer, A., Canty, T. P., Salawitch, R. J., Worden, H. M., Fried, A., Mikoviny, T., and Wisthaler, A.:
Measured and modeled CO and <span class="inline-formula">NO<sub><i>y</i></sub></span> in DISCOVER-AQ: An evaluation of emissions and chemistry over the eastern US,
Atmos. Environ., 96, 78–87, https://doi.org/10.1016/j.atmosenv.2014.07.004, 2014. 2. Beirle, S., Platt, U., Wenig, M., and Wagner, T.: Weekly cycle of NO2 by GOME measurements: a signature of anthropogenic sources, Atmos. Chem. Phys., 3, 2225–2232, https://doi.org/10.5194/acp-3-2225-2003, 2003. 3. Boersma, K. F., Eskes, H. J., Veefkind, J. P., Brinksma, E. J., van der A, R. J., Sneep, M., van den Oord, G. H. J., Levelt, P. F., Stammes, P., Gleason, J. F., and Bucsela, E. J.: Near-real time retrieval of tropospheric NO2 from OMI, Atmos. Chem. Phys., 7, 2103–2118, https://doi.org/10.5194/acp-7-2103-2007, 2007. 4. Boersma, K. F., Jacob, D. J., Eskes, H. J., Pinder, R. W., Wang, J., and Van Der A, R. J.: Intercomparison of SCIAMACHY and OMI tropospheric NO2 columns: Observing the diurnal evolution of chemistry and emissions from space, J. Geophys. Res.-Atmos., 113, D16S26, https://doi.org/10.1029/2007JD008816, 2008. 5. Boersma, K. F., Jacob, D. J., Trainic, M., Rudich, Y., DeSmedt, I., Dirksen, R., and Eskes, H. J.: Validation of urban NO2 concentrations and their diurnal and seasonal variations observed from the SCIAMACHY and OMI sensors using in situ surface measurements in Israeli cities, Atmos. Chem. Phys., 9, 3867–3879, https://doi.org/10.5194/acp-9-3867-2009, 2009.
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|