Measured and modelled air quality trends in Italy over the period 2003–2010

Author:

D'Elia IlariaORCID,Briganti Gino,Vitali Lina,Piersanti Antonio,Righini Gaia,D'Isidoro Massimo,Cappelletti Andrea,Mircea Mihaela,Adani Mario,Zanini Gabriele,Ciancarella Luisella

Abstract

Abstract. Air pollution harms human health and the environment. Several regulatory efforts and different actions have been taken in the last decades by authorities. Air quality trend analysis represents a valid tool in assessing the impact of these actions taken both at national and local levels. This paper presents for the first time the capability of the Italian national chemical transport model, AMS-MINNI, in capturing the observed concentration trends of three air pollutants – NO2, inhalable particles having diameter less than 10 µm (PM10), and O3 – in Italy over the period 2003–2010. We firstly analyse the model performance finding it in line with the state of the art of regional air quality modelling. The modelled trends result in a general significant downward trend for the three pollutants and, in comparison with observations, the values of the simulated trends were of a similar magnitude for NO2 (in the range −3.0 to −0.5 µg m−3 yr−1), while a smaller range of trends was found than those observed for PM10 (−1.5 to −0.5 µg m−3 yr−1) and O3 maximum daily 8 h average concentration (−2.0 to −0.5 µg m−3 yr−1). As a general result, we find good agreement between modelled and observed trends; moreover, the model provides a greater spatial coverage and statistical significance of pollutant concentration trends with respect to observations, in particular for NO2. We also conduct a qualitative attempt to correlate the temporal concentration trends to meteorological and emission variability. Since no clear tendency in yearly meteorological anomalies (temperature, precipitation, geopotential height) was observed for the period investigated, we focus the discussion of concentration trends on emission variations. We point out that, due to the complex links between precursor emissions and air pollutant concentrations, emission reductions do not always result in a corresponding decrease in atmospheric concentrations, especially for those pollutants that are formed in the atmosphere such as O3 and the major fraction of PM10. These complex phenomena are still uncertain and their understanding is of the utmost importance in planning future policies for reducing air pollution and its impacts on health and ecosystems.

Funder

Fondazione Centro Studi Enel

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference109 articles.

1. Airbase: Air quality e-reporting, available at: https://www.eea.europa.eu/data-and-maps/data/aqereporting-8, last access: 15 July 2020.

2. Amato, F., Karanasiou, A., Moreno, T., Alastuey, A., Orza, J., Lumbreras, J., Borge, R., Boldo, E., Linares, C., and Querol, X.: Emission factors from road dust resuspension in a Mediterranean freeway, Atmos. Environ., 61, 580–587, https://doi.org/10.1016/j.atmosenv.2012.07.065, 2012.

3. Apte, J. S., Brauer, M., Cohen, A. J., Ezzati, M., and Pope III, C. A.: Ambient PM2.5 Reduces Global and Regional Life Expectancy, Environ. Sci. Tech. Lett., 5, 546–551, https://doi.org/10.1021/acs.estlett.8b00360, 2018.

4. Arianet: SURFPRO3 User's guide (SURFace-atmosphere interface PROcessor, Version 3), Software manual, Arianet R2011.31, Milan, Italy, 2011.

5. Arianet: Emission Manager. Modular processing system for model-ready emission input Preparation, Software Manual, Milan, Italy, 2014.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3