Understanding the model representation of clouds based on visible and infrared satellite observations
-
Published:2021-08-17
Issue:16
Volume:21
Page:12273-12290
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Geiss StefanORCID, Scheck LeonhardORCID, de Lozar Alberto, Weissmann MartinORCID
Abstract
Abstract. There is a rising interest in improving the representation of clouds in numerical weather prediction models. This will directly lead to improved radiation forecasts and, thus, to better predictions of the increasingly important production of photovoltaic power. Moreover, a more accurate representation of clouds is crucial for assimilating cloud-affected observations, in particular high-resolution observations from instruments on geostationary satellites. These observations can also be used to diagnose systematic errors in the model clouds, which are influenced by multiple parameterisations with many, often not well-constrained, parameters. In this study, the benefits of using both visible and infrared satellite channels for this purpose are demonstrated. We focus on visible and infrared Meteosat SEVIRI (Spinning Enhanced Visible InfraRed Imager) images and their model equivalents computed from the output of the ICON-D2 (ICOsahedral Non-hydrostatic, development version based on version 2.6.1; Zängl et al., 2015) convection-permitting, limited area numerical weather prediction model using efficient forward operators. We analyse systematic deviations between observed and synthetic satellite images derived from semi-free hindcast simulations for a 30 d summer period with strong convection. Both visible and infrared satellite observations reveal significant deviations between the observations and model equivalents. The combination of infrared brightness temperature and visible reflectance facilitates the attribution of individual deviations to specific model shortcomings. Furthermore, we investigate the sensitivity of model-derived visible and infrared observation equivalents to modified model and visible forward operator settings to identify dominant error sources. Estimates of the uncertainty of the visible forward operator turned out to be sufficiently low; thus, it can be used to assess the impact of model modifications. Results obtained for various changes in the model settings reveal that model assumptions on subgrid-scale water clouds are the primary source of systematic deviations in the visible satellite images. Visible observations are, therefore, well-suited to constrain subgrid cloud settings. In contrast, infrared channels are much less sensitive to the subgrid clouds, but they can provide information on errors in the cloud-top height.
Funder
Bundesministerium für Wirtschaft und Energie
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference59 articles.
1. Bachmann, K., Keil, C., Craig, G. C., Weissmann, M., and Welzbacher, C. A.:
Predictability of deep convection in idealized and operational forecasts:
Effects of radar data assimilation, orography, and synoptic weather regime,
Mon. Weather Rev., 148, 63–81, 2020. a 2. Baldauf, M., Gebhardt, C., Theis, S., Ritter, B., and Schraf, C.: Beschreibung des operationellen Kürzestfristvorhersagemodells COSMO-D2 und COSMO-D2-EPS und seiner Ausgabe in die Datenbanken des DWD (2018), available at: https://www.dwd.de/SharedDocs/downloads/DE/modelldokumentationen/nwv/cosmo_d2/cosmo_d2_dbbeschr_version_1_0_201805.pdf?__blob=publicationFile&v=3
(last access: 14 August 2021) 2018. a 3. Baum, B. A., Yang, P., Heymsfield, A. J., Bansemer, A., Cole, B. H., Merrelli, A., Schmitt, C., and Wang, C.: Ice cloud single-scattering property models with the full phase matrix at wavelengths from 0.2 to 100 µm, J. Quant. Spectrosc. Ra., 146, 123–139,
https://doi.org/10.1016/j.jqsrt.2014.02.029, 2014. a 4. Bechtold, P., Semane, N., Lopez, P., Chaboureau, J.-P., Beljaars, A., and
Bormann, N.: Representing Equilibrium and Nonequilibrium Convection in
Large-Scale Models, J. Atmos. Sci., 71, 734–753, https://doi.org/10.1175/JAS-D-13-0163.1, 2014. a 5. Böhme, T., Stapelberg, S., Akkermans, T., Crewell, S., Fischer, J.,
Reinhardt, T., Seifert, A., Selbach, C., and Van Lipzig, N.: Long-term
evaluation of COSMO forecasting using combined observational data of the GOP
period, Meteorol. Z., 20, 119–132, 2011. a
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|