Satellite retrieval of aerosol combined with assimilated forecast
-
Published:2021-02-10
Issue:3
Volume:21
Page:1797-1813
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Yoshida Mayumi, Yumimoto KeiyaORCID, Nagao Takashi M., Tanaka Taichu Y.ORCID, Kikuchi Maki, Murakami Hiroshi
Abstract
Abstract. We developed a new aerosol satellite retrieval algorithm
combining a numerical aerosol forecast. In the retrieval algorithm, the
short-term forecast from an aerosol data assimilation system was used as an a priori estimate instead of spatially and temporally constant values. This
method was demonstrated using observation of the Advanced Himawari Imager
onboard the Japan Meteorological Agency's geostationary satellite
Himawari-8. Overall, the retrieval results incorporated strengths of the
observation and the model and complemented their respective weaknesses,
showing spatially finer distributions than the model forecast and less noisy
distributions than the original algorithm. We validated the new algorithm
using ground observation data and found that the aerosol parameters
detectable by satellite sensors were retrieved more accurately than an a priori
model forecast by adding satellite information. Further, the satellite
retrieval accuracy was improved by introducing the model forecast instead of
the constant a priori estimates. By using the assimilated forecast for an a priori estimate, information from previous observations can be propagated to
future retrievals, leading to better retrieval accuracy. Observational
information from the satellite and aerosol transport by the model are
incorporated cyclically to effectively estimate the optimum field of
aerosol.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference45 articles.
1. Benedetti, A., Morcrette, J.-J., Boucher, O., Dethof, A., Engelen, R. J.,
Fisher, M., Flentje, H., Huneeus, N., Jones, L., Kaiser, J. W., Kinne, S.,
Mangold A., Razinger, M. , Simmons, A. J., and Suttie, M.: Aerosol analysis and
forecast in the European Centre for Medium-Range Weather Forecasts
Integrated Forecast System: 2. Data assimilation, J. Geophys. Res., 114, D13205,
https://doi.org/10.1029/2008JD011115, 2009. 2. Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T., Inoue, H., Kumagai,
Y., Miyakawa, T., Murata, H., Ohno, T., Okuyama, A., Oyama, R., Sasaki, Y.,
Shimazu, Y., Shimoji, K., Sumida, Y., Suzuki, M., Taniguchi, H., Tsuchiyama,
H., Uesawa, D., Yokota, H., and Yoshida, R.: An introduction to Himawari-8/9
– Japan's new-generation geostationary meteorological satellites, J. Meteor. Soc. Japan, 94,
151–183, 2016. 3. Dai, T., Schutgens, N. A. J., Goto, D., Shi, G., and Nakajima, T.:
Improvement of aerosol optical properties modeling over Eastern Asia with
MODIS AOD assimilation in a global non-hydrostatic icosahedral aerosol
transport model, Environ. Pollut., 195, 319–329, https://doi.org/10.1016/j.envpol.2014.06.021, 2014. 4. Dai, T., Cheng, Y., Suzuki, K, Goto, D., Kikuchi, M., Schutgens, N.,
Yoshida, M., Zhang, P., Husi, L., Guangyu, S., and Nakajima, T.: Hourly
aerosol assimilation of Himawari-8 AOT using the four-dimensional local
ensemble transform Kalman filter, J. Adv. Model. Earth Syst., 11, 680–711, https://doi.org/10.1029/2018MS001475, 2019. 5. Dubovik, O. and King, M. D.: A flexible inversion algorithm for retrieval of
aerosol optical properties from Sun and sky radiance measurements, J. Geophys. Res., 105,
20673–20696, 2000.
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|