PM<sub>2.5</sub> surface concentrations in southern West African urban areas based on sun photometer and satellite observations

Author:

Léon Jean-FrançoisORCID,Akpo Aristide Barthélémy,Bedou Mouhamadou,Djossou Julien,Bodjrenou Marleine,Yoboué Véronique,Liousse Cathy

Abstract

Abstract. Southern West Africa (SWA) is influenced by large numbers of aerosol particles of both anthropogenic and natural origins. Anthropogenic aerosol emissions are expected to increase in the future due to the economical growth of African megacities. In this paper, we investigate the aerosol optical depth (AOD) in the coastal area of the Gulf of Guinea using sun photometer and MODIS satellite observations. A network of lightweight handheld sun photometers have been deployed in SWA from December 2014 to April 2017 at five different locations in Côte d'Ivoire and Benin. The handheld sun photometer measures the solar irradiance at 465, 540 and 619 nm and is operated manually once per day. Handheld-sun-photometer observations are complemented by available AERONET sun photometer observations and MODIS level 3 time series between 2003 and 2019. MODIS daily level 3 AOD agrees well with sun photometer observations in Abidjan and Cotonou (correlation coefficient R=0.89 and RMSE = 0.19). A classification based on the sun photometer AOD and Ångström exponent (AE) is used to separate the influence of coarse mineral dust and urban-like aerosols. The AOD seasonal pattern is similar for all the sites and is clearly influenced by the mineral dust advection from December to May. Sun photometer AODs are analyzed in coincidence with surface PM2.5 concentrations to infer trends in the particulate pollution levels over conurbations of Abidjan (Côte d'Ivoire) and Cotonou (Benin). PM2.5-to-AOD conversion factors are evaluated as a function of the season and the aerosol type identified in the AE classification. The highest PM2.5 concentrations (up to 300 µg m−3) are associated with the advection of mineral dust in the heart of the dry season (December–February). Annual means are around 30 µg m−3, and 80 % of days in the winter dry season have a value above 35 µg m−3, while concentrations remain below 16 µg m−3 from May to September. No obvious trend is observed in the 2003–2019 MODIS-derived PM2.5 time series. However the short dry period (August–September), when urban-like aerosols dominate, is associated with a monotonic trend between 0.04 and 0.43 µgm-3yr-1 in the PM2.5 concentrations over the period 2003–2017. The monotonic trend remains uncertain but is coherent with the expected increase in combustion aerosol emissions in SWA.

Funder

FP7 Environment

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3